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1. Climate Modeling – A Quick Overview



• Climate: Average weather over a long period of time.

• Climate Model: HPC software that simulates Earth’s climate.

• Earth System: atmosphere, ocean, land, and ice.

• Earth System Model (ESM): see Climate Model.

• CESM: NSF NCAR’s flagship ESM.
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Terminology



NSF National Center for Atmospheric Research (NCAR)

A Federally Funded Research 

and Development Center for 

Earth System Science.

We support the research 

community by providing 

advanced computer models, 

observations, tools, and 

datasets.

Derecho, a 20-petaflop system

Mesa Lab, Boulder CO

Research Aviation Facility
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Growth of Climate Modeling



Each component:

- Solves governing equations (e.g., fluid dynamics, thermodynamics)

- Exchanges data (e.g., atmosphere <-> ocean)
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Components of ESMs



MOM6
160K LOC Fortran
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Ocean Component – Governing Equations



Visualization of eddy-resolving ocean model output (ECCO2) showing Gulf Stream currents and heat transport.

NASA/Goddard Space Flight Center Scientific Visualization Studio
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Atmosphere – Ocean Coupling



https://earthsystemmodeling.org/nuopc/

After each atmospheric "down" 

sweep, fast ocean processes 

must run before the "up" sweep. 

This repeats until slower ocean 

processes are triggered, which 

rely on ATM fields.
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Atmosphere – Ocean Coupling, Data Flow
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CESM Architecture
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2. Verification and Validation – Challenges and Current Practices

(a) Scientific, (b) Software



Scientific Validation

• Hindcasting

• Analysis

• Benchmarks 

• Intercomparisons e.g., CMIP6      

These methods generally require 

substantial resources and/or manual 

expert analysis (subjective).

Near Surface Air Temperature (1995-2014) – Ensemble Mean
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Software Verification & Validation

Backbone: Regression tests

- Run test suite to check various aspects and different 

combination of model configurations and software environments.

We seek:

- Bitwise identical results (to the extend possible).

- Exact restart reproducibility.

- No answer changes across different processor counts.
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Bitwise Reproducibility – Why?

Marshall Ward, “The MOM6 Development Cycle” (2023)  
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Bitwise Reproducibility – How?
Some methods used in MOM6 (ocean component):
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Rotational Symmetry Test in MOM6



Rotational Symmetry Test in MOM6



Rotational Symmetry Test in MOM6
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Reproducibility vs Performance

• We limit compiler optimizations like FMA

To preserve exact results, we restrict reordering of expressions.

• Manual control of arithmetic operations

Parentheses placement and explicit order of operations.

• Reproducing Sums and Reductions!

• Our priority: correctness/reproducibility over performance

Bit-for-bit reproducibility takes precedence in our workflows.
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When Bitwise Reproducibility isn’t Feasible

How to check correctness when exact reproducibility isn’t possible:

• New scientific modules

• Updated compilers or toolchains

• New hardware / systems

• Aggressive optimizations

• Any other major changes
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Ensemble Consistency Test (ECT)

Question: Is the new answer correct? (not well-defined)

Alternative question: Is it statistically distinguishable from the original?

ECT approach: evaluate in the context of the climate model’s variability

(climate scientists think of uncertainty through the use of ensembles)

https://github.com/NCAR/PyCECT
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Ensemble Consistency Test (ECT)

https://github.com/NCAR/PyCECT

1. Build a Reference Ensemble

1. Use a trusted hardware/software stack.

2. Apply small perturbations to initial 

conditions (𝑂(10–14)).

3. Perform short model runs (e.g., 9 

timesteps).

2. Test New Configuration

1. Run the updated model / environment.

2. Compare output against ensemble.

3. Check if results are statistically 

distinguishable.
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3. Toward Formal Specification for ESMs

and a case study
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Toward Formal Specification for ESMs

Motivation:

- Traditional testing is computationally expensive and incomplete.

- Manual validation is labor-intensive and subjective.

- ECT is very helpful for validating porting and optimizations, but necessitates a baseline.

Goal:

- A domain-aware, relational spatio-temporal logic for ESMs to allow property checking, 

along the lines of lightweight formal methods.
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Targets for Specification and Verification

1. Model Coupling, Concurrency, and Parallelism

2. Continuous and Instantaneous Processes

3. Spatial Representations
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Continuous and Instantaneous Processes

A key aspect of our proposed specification approach is the distinction and the 

interplay between continuous and instantaneous processes:

1. Dynamical core, i.e., governing equations (PDEs)

2. Parameterizations to represent unresolved processes

3. Computational routines

continuous

discrete
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Continuous and Instantaneous Processes

To specify and reason about continuous and instantaneous processes, we draw inspiration from 

cyber-physical systems (CPS) domain, where continuous evolution is represented by ordinary 

differential equations (ODEs) while abrupt changes are represented by discrete assignments.
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Hybrid programming (CPS)

A hybrid model of bouncing ball (in KeYmaera X)

Altuntas and Baugh (2018)
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Hybrid programming for numerical software

Altuntas and Baugh (2018)

We argue that numerical models can be viewed as cyberphysical systems so as to abstract 

away from certain aspects and instead focus on higher-level algorithmic correctness.

Take, shallow water equations:
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Mesh Representations

Specify the smallest necessary discrete grid:

• Key idea: Limit grid to local domain of dependence

• Focus: A single grid cell and its immediate neighbors

Why Minimal Grid Works:

• PDEs have limited domain of dependence (CFL condition)

• Nondeterminism and compositional reasoning can be 

utilized for external inputs/behavior.
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Case Study - A bug in a MOM6-CESM parameterization scheme 
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Case Study
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Case Study



Undesired behavior:

- Negative diffusivities encountered in OBL.

Debugging:

- Could only reproduce with the full-scale global configuration.

- Pinpointed issue via an interactive debugger. 

- Took several days and many thousands of CPU hours.

Fix: 

- Modify the matching algorithm for cases where the interior diffusivity gradient is negative. 

Verification: 

- A KeYmaera X model of the KPP scheme.

Case Study



Developed the hybrid model of KPP in KeYmaera X



Reproduced the erroneous behavior



Applied a fix, and constructed a manual proof



Closed the proof, confirming that the fix is valid for all possible cases.



Complementary Technique:

• Provides higher confidence through formal verification.

Limitations to Widespread Use:

• Requires expertise in formal methods and theorem proving.

• Manual proof construction is nontrivial, especially with differential equations.

Practical Implication:

• Valuable for targeted, high-stakes verification,

but unlikely to become a routine day-to-day tool for ESM modelers.

Hybrid Theorem Proving for Numerical Models
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An Alternative: Lightweight Formal Methods with CIVL-C

• More potential to become practical & scalable.

• Developer-friendly syntax.

• CIVL resembles imperative languages.

• Familiar to scientific software developers.

• Efficient Verification Workflow:

• Automated feedback on defects.

• Enables rapid iteration during development.

• No need for full formal proofs at each step.
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CIVL-C model of the KPP defect:
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Our conclusion from the paper: 
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An Alternative: Lightweight Formal Methods with CIVL-C

Limitations of CIVL-C:

• No native support for continuous dynamics or ODEs:

• Continuous evolution must be approximated with discrete schemes

• Limited mathematical rigor compared to theorem provers

• Provides strong evidence, but not formal guarantees.

Bottom Line:

• Strikes a balance between rigor and usability.
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Announcement

https://ncar.github.io/correctness-workshop/
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Thanks!

altuntas@ucar.edu

mailto:altuntas@ucar.edu
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