G peroafed by Uucam

Specification and Verification for Climate Modeling
Formalization Leading to Impactful Tooling

Alper Altuntas’, Allison Baker!, John Baugh?, Ganesh Gopalakrishnan® and Stephen Siegel*

TNSF National Center for Atmospheric Research (NCAR),
°North Carolina State University, 3University of Utah, “University of Delaware

May 4th, 2025

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Outline

1. Climate Modeling — A Quick Overview
2. Verification and Validation — Challenges, Current Practices

3. Toward Formal Specification for Climate Models

g
*‘Kz'."

"“"" M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

1. Climate Modeling — A Quick Overview

+
L

"“"" M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Terminology

« Climate: Average weather over a long period of time.

« Climate Model: HPC software that simulates Earth’s climate.
« Earth System: atmosphere, ocean, land, and ice.

- Earth System Model (ESM): see Climate Model.

« CESM: NSF NCAR's flagship ESM.

‘a:‘“ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

NSF National Center for Atmospheric Research (NCAR)

A Federally Funded Research
and Development Center for
Earth System Science.

We support the research
community by providing
advanced computer models,
observations, tools, and
datasets.

e
00000 = - W

Derecho, a 20-petaflop system Research Aviation Facility

**‘1' M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Growth of Climate Modeling

Dust/sea spray/carbon aerosols
—
Sulfate aerosol
Biochemical cycles
Carbon cycle

Atmospheric/land surface/
on
Ocean | Seaice

1960s 1970s 1980s 1990s 2000s 2010s

Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Components of ESMs

Each component:
- Solves governing equations (e.q., fluid dynamics, thermodynamics)
- Exchanges data (e.q., atmosphere <-> ocean)

g

{Kzl.j f*'

INSF>
.

M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Ocean Component — Governing Equations

Po [aru +wadu+ (f+zx u] =-V,(p+K)-pV,P +p,0 vector-inv horz velocity
pd,P+0d,p=0 hydrostatic
V,u+d,w=0 continuity
0:6+V, (ub)+d,(wb =0 g — 0z E(z:' potential/Cons temp
#S+V, mS)+9,(wsS)=07-08,7% salinity
p=p(S,0,2) equation of state.

2

+ parameterizations

+ computationg| routines MOM6
\

160K LOC Fortran

Horizontal Grid
| (Latitude-Longitude) |~

Vertical Grid
(Height or Pressure)

g

{Kzl.j f*'
INSF>
.

M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Visualization of eddy-resolving ocean model output (ECCO2) showing Gulf Stream currents and heat transport.

NASA/Goddard Space Flight Center Scientific Visualization Studio

Atmosphere — Ocean Coupling

I . Visible radiation
Sensible heat -

Wind<

Precipitation

Evaporation l 1
/) Ekman l
—

transport : Penetrating
radiation

Gulf stream

Langmuir
circulation

©The COMET Program

Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Atmosphere — Ocean Coupling, Data Flow

Driver: IMPLICIT COUPLING

Model: ATM :do},Nn” /’ 4 /" =R
L \V, N/ hi7 : "
S “ ./ “ After each atmospheric "down
S sweep, fast ocean processes
= . must run before the "up" sweep.
“fast’ /N This repeats until slower ocean
Model: OCN ‘Sl [7 . .
O processes are triggered, which
Oh 05h ... 6h 65h .. rely on ATM fields.
Model Time:—| } | | >
.
ast
slow

https://earthsystemmodeling.org/nuopc/

r‘éhi“" M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

CESM Architecture

p
< Chemistry]

Atmosphere | (CAM7-Chem)
(CAM7) i High-Top Atm
i | (WACCM?)
(CTSMS,
FATES)

Coupler Sea Ice
=) (CICES)

River
(MOSART, Land Ice}

mizuiouie) Ocean (CISM3)
(MOMS)

Surface Waves Biogeochemistry
(WaveWatch3) (MARBL)

Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

2. Verification and Validation — Challenges and Current Practices
(a) Scientific, (b) Software

"""‘ -\NCF\R Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

SCientifiC Val idation Near Surface Air Temperature (1995-2014) — Ensemble Mean

Hindcasting

Analysis

Benchmarks
Intercomparisons e.g., CMIP6

-35-30-25-20-15-10 -5 0 5 10 15 20 25 30 35
(°C)

CMIP6 root mean square error

These methods generally require
substantial resources and/or manual
expert analysis (subjective).

05 1 15 2 25 3 35 4 45 5 55 6
(°C)

'E"" M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Software Verification & Validation

Backbone: Regression tests
- Run test suite to check various aspects and different
combination of model configurations and software environments.

We seek:
- Bitwise identical results (to the extend possible).
- Exact restart reproducibility.
- No answer changes across different processor counts.

1‘1\’1&1& ‘ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Bitwise Reproducibility — Why?

Marshall Ward, “The MOM6 Development Cycle” (2023)

'E"" M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Bitwise Reproducibility — How?
Some methods used in MOMG6 (ocean component):

Addition

Addition operations must be done in pairs. When more than one addition is
required, the order should be specified using parentheses.

* This is bad:
o z=a+b+c
» This is good:
o z=(a+b) +c

We avoid the Fortran sum() function since the result is dependent on the
order of operations within the summation. Using explicit loops allows us to
define the order of summation. So

a = sum(b(:))
should be

Global summation

Floating point operations across MPI ranks are volatile, since the order can
change depending on the state of the network. Functions such as
MPI_Reduce will not generally be reproducible when used for floating point
arithmetic.

When performing summations over MPI ranks, use the reproducing_sum

function.

use MOM_coms, only: reproducing_sum

sum = reproducing_sum(array(:,:))

Trascendental functions

Use of transcendental functions, such as trigonometric functions, non-
integer powers, and logarithms, are often implementation-dependent and
should be avoided when possible.

Rotational Symmetry Test in MOMG6

By setting the runtime option ROTATE_INDEX to True, the model rotates the domain by some
number of 90 degree turns. This option can be used to look for bugs in which east-west operations
do not match north-south operations. It changes the order of array elements as shown here:

'E"" M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Rotational Symmetry Test in MOMG6

1
6] = 7@a+9s+dc+9p) I

1
¢§? = Z((¢A +¢p) + (¢c + $p)) ?
©

Rotational Symmetry Test in MOMG6

1
b)) = 7@a+¢s+dc+ép) P

1
¢§? = Z((¢A +¢p) + (¢c + $p)) x

c 1
$i) = 7(@a +¢p) + @5 +$0)) \/

(*)Add parentheses for FMA rotational symmetry #1634

e« M Hallberg-NOAA merged 30 commits into mom-ocean:main from Hallberg-NOAA:FMA_rotational_symmetry_main |‘_|;| on Aug

3

L) Conversation @ l -o- Commits [F} Checks Files changed

Hallberg-NOAA commented on Jul 30, 2024 - edited ~

This series of 30 commits adds parentheses in 54 files throughout the MOM®6 code base, or (in a few cases) revises the
order of sums in expressions for various u- and v-component calculations, so that all answers exhibit rotational symmetry
when fused-multiply-adds (FMAs) are enabled and appropriate parameter settings are chosen.

726
727
728
729

730

do j=js,je ; do I=Isq,Ieq 726 do j=js,je ; do I=Isq,Ieq
CAuS(I,j,k) = 0.25 % & 727 CAuS(I,j,k) = 0.25 % &
(gS(I,J) * (vh(i+1,J,k) + vh(i,J,k)) + & 728 + (§aS(1,3) * (vh(i+1,3,k) + vh(i,J,kD)) + &
qS(I,J-1) * (vh(i,J-1,k) + vh(i+1,J-1,k))) * 729 + (Bgs(1,3-1) * (vh(i,3-1,k) + vh(i+1,3-1,k})))
G%IdxCu(I,j) * G%IdxCu(I,j)
enddo ; enddo 730 enddo ; enddo

Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Reproducibility vs Performance

 We limit compiler optimizations like FMA
To preserve exact results, we restrict reordering of expressions.

 Manual control of arithmetic operations
Parentheses placement and explicit order of operations.

* Reproducing Sums and Reductions!

* Our priority: correctness/reproducibility over performance
Bit-for-bit reproducibility takes precedence in our workflows.

r‘éﬁ‘" ‘ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

When Bitwise Reproducibility isn’t Feasible

How to check correctness when exact reproducibility isn’t possible:

« New scientific modules

« Updated compilers or toolchains
 New hardware / systems

» Aggressive optimizations

* Any other major changes

‘&:‘ ‘ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Ensemble Consistency Test (ECT)

Question: Is the new answer correct? (not well-defined)
Alternative question: |s it statistically distinguishable from the original?
ECT approach: evaluate in the context of the climate model’s variability

(climate scientists think of uncertainty through the use of ensembles)

https://github.com/NCAR/PyCECT

:‘a*:‘“ ‘ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Ensemble Consistency Test (ECT)

1. Build a Reference Ensemble

1. Use a trusted hardware/software stack.
2. Apply small perturbations to initial J K
conditions (0(10-14)). kg -> /\\
3. Eeﬁorm short model runs (e.g., 9 ?W > T -
tlmeStepS) —L"“:‘ Scientific Spatially / E N
~' a,, Model | Average FCAS b o I Pt
iR ke g Transform — N
2. Test New Configuration E— — | /| \
1. Run the updated model / environment. " -»> — |
2. Compare output against ensembile. Eveluate Using m, Criteria
3. Check if results are statistically Y
distinguishable.

https://github.com/NCAR/PyCECT

Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

3. Toward Formal Specification for ESMs
and a case study

"""‘ -\NCF\R Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Toward Formal Specification for ESMs

Motivation:

- Traditional testing is computationally expensive and incomplete.

- Manual validation is labor-intensive and subjective.

- ECT is very helpful for validating porting and optimizations, but necessitates a baseline.

Goal:
- A domain-aware, relational spatio-temporal logic for ESMs to allow property checking,

along the lines of lightweight formal methods.

‘a:‘“ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Targets for Specification and Verification

1. Model Coupling, Concurrency, and Parallelism
2. Continuous and Instantaneous Processes
3. Spatial Representations

"""' \NCF\R Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Continuous and Instantaneous Processes

A key aspect of our proposed specification approach is the distinction and the
interplay between continuous and instantaneous processes:

1. Dynamical core, i.e., governing equations (PDEs) <« — continuous
2. Parameterizations to represent unresolved processes :: _
3. Computational routines < discrete

Ax = 0.1 degree Ax = 1.0 degree

SST 30/09/2000 0.1° Model SST 30/09/2000 1* Model

Lotitude

M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Continuous and Instantaneous Processes

To specify and reason about continuous and instantaneous processes, we draw inspiration from
cyber-physical systems (CPS) domain, where continuous evolution is represented by ordinary
differential equations (ODEs) while abrupt changes are represented by discrete assignments.

» Continuous evolution:

Ox _ ov_
ot ot &

» Discrete change:

vV .— —V

to t oty t f g
Platzer, A. "Logical Foundations of Cyber-Physical Systems.” (2018)

**:‘ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Hybrid programming (CPS)

A hybrid model of bouncing ball (in KeYmaera X)

(0 < x < Xmax) — initial conditions

{ execution begins

over some At { {xX'=v,v=—-g &(x>0)} continuous evolution
instantaneous { ?(x=0) v:=—cv; discrete assignment
] loop or terminate

(0 < x < Xmax) postcondition

where x is altitude, v is velocity, a is acceleration.

Altuntas and Baugh (2018)

x'g_-"’,f:: :

*'"‘"" M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Hybrid programming for numerical software

We argue that numerical models can be viewed as cyberphysical systems so as to abstract
away from certain aspects and instead focus on higher-level algorithmic correctness.

Take, shallow water equations:
. _8uh
= x0T

» In an actual numerical model, discretize both in time and space:

pr o
; " i ((Uh).?-l-l - (Uh)?_l)/(Ax),,,,

» In a hybrid verification model, discretize in space only:
n = ((Uh)i+1 — (Uh);_l)/(Ax),

where 7 is water elevation, h is water height, u is velocity.
Altuntas and Baugh (2018)

:hi‘“ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Mesh Representations

Specify the smallest necessary discrete grid:
« Key idea: Limit grid to local domain of dependence
* Focus: A single grid cell and its immediate neighbors

Why Minimal Grid Works:

* PDEs have limited domain of dependence (CFL condition)

* Nondeterminism and compositional reasoning can be
utilized for external inputs/behavior.

‘&:‘ ‘ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Case Study - A bug in a MOM6-CESM parameterization scheme

The KPP scheme

» The continuous evolution of a scalar quantity A\ over a vertical water column:

O\
ot
» The unresolved turbulent flux parameterized as a diffusive process (Griffies et al., 2015):

O —7. =%
—az(w)\ + w)

— o\
N = —Ky(22
w’/ A(az + 7x)
» The diffusivity Ky at depth d within the OBL (Large et al., 1994):

K)\ = h- W)\(O') . G)\(O')
» Shape function for the OBL diffusivities:

G)\(J) = ap + a10 + 3202 + 3303

i

**““ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Case Study

The KPP scheme

» Compute the ocean boundary layer (OBL) depth.
» Compute the diffusivities within ocean interior.
» Compute the OBL diffusivities (no matching).

Z 4
—— surface
G
OBL diffusivities (no matching)
—— OBL base
Depth o !T.Fﬂel‘rior diffusivities
—— ——— bottom > diffusivity (m*/s)

b8
ifj*"" z M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Case Study

The KPP scheme

» Compute the ocean boundary layer (OBL) depth.
» Compute the diffusivities within ocean interior.

» Compute the OBL diffusivities (matching).

Z 4
i surface
—— OBL base —
Depth Matched diffusivities
o bottom - diffusivity (m?/s)

g
4‘.‘3'.1’

"“"" M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Case Study

Undesired behavior:
- Negative diffusivities encountered in OBL.

Debugging:

- Could only reproduce with the full-scale global configuration.
- Pinpointed issue via an interactive debugger.

- Took several days and many thousands of CPU hours.

Fix:
- Modify the matching algorithm for cases where the interior diffusivity gradient is negative.

Verification:
- A KeYmaera X model of the KPP scheme.

Developed the hybrid model of KPP in KeYmaera X

@ @ [Kefmaera X X +
&« C @ 127.0.0.1:8090/dashboard.html?#/models w ® O 6 o
kpp_matching_faulty # Edit
K A J¥ UITTUSIVITY 41 1IATErTace */

/* shape function coefficients */

R a2.
R a3.
R nu. /# interior diffusivity at sigma=1%*/
R dnu. /# interior diffusivity gradiant at sigma=1x/
End.
Problem.
initialCenditions() -»
S
{
/% 1. DDAs: */
computeBLD;
computeNu;
computek;

/% 2. Continuous system: */

{zCr' = -zCr}
_ br@invariant(K-0 & zw()>=zCr & 2Cr=0)
1(k>8)

Reproduced the erroneous behavior

@ @ [Kefmaera X X +

c

@ 127.0.0.1:8090/dashboard.htmli?#/proofs/103

¢ #* @ 0t @

| Kevgaa e i ° |

Counter-example search result

© Formula not valid, found a counter-example

1 1 142 1/2 32 a2z o 1 1 1 32 12 1/2 172 1/4 vz o2 1
(K=0szw()=zzCr_142zCr_1>0)AD ()=04D (j=zw()azw()=0sw(=0ah=D ()-zCr_14(0 < alphasalpha < 1)4»zCr_0=alpha“zCr_1anu=0—true—(
11 32 1 1 111 -8 1 32 1 1 111 -8 1 32 1 1

w0 ()-zw(lh+(-2+ 3 nuAh w()+dnu/w()* (D (-zw()}h)*2+(1-nuAhwi)-dnu/w()* (D (-zw()/h)*3)>0-false)

Counter-example values

h 1
nu 1
z2Cr 1 1/2
zw 1
zCr 0 1/4
dnu -8
w1
D 32
alpha 1/2
K 1

ImpIyR(L) : Loop(1 Ko0&ZwW()>=zCT&ZCT0 ¥, 17 & =(
QE,

Applied a fix, and constructed a manual proof

@ @ [Kefmaera X X +
¢ C ® 1270.0.1:8090/dashboard.htmi?#/proofs/109 * @ 0a | O
P Auto (1] Unfold # Prop-Auto A< Simplify "D Step back # Edit §4 Browse... =
Propositional - Quantifiers - Hybrid Programs - Differential Equations - Closing - Inspect -
= Goal: |
Hint: IMPLYR |
= D>0AD>2wazw>0A0<nUAK>0AwW>0n20r=2w = [{{h:=D-2Cr;
. sigma := (D-zw)/h ; alpha :=*; ? 0 < alpha » alpha < 1 ; 2Cr := alpha*zCr ; }{ nu
T oi=*;?nu> 0 dnuis* H a2 i= -2+ 3 nwd(htw)+dnuiw ; a3 := 1-nu/(hw)-dnu/w ;
K := h*w*(sigma+a2*sigma~2+a3*sigma~3) ; }{ zCr' = -zCr & true }} *] K> 0
| x |
st Loop Induction loop = itep
r e K>08zw(>=z... , &
nil Ko08zwi>=z... [8] K>08zw(>=z....
K>08zw()>=z2... - P
r = [a']P, A
[*] iterateb [{a;}1P « Paa]l{a}]P

Godel/Vacuous 6v

KeYmaera X vel [1d boxd

Search | Search for lemmas Browse... = Apply Lemma

Closed the proof, confirming that the fix is valid for all possible cases.

® O ® [ketmaerax x4+

&« C @ 1270.0.1:8090/dashboard.html?#/proofs/97 r ® O @ o

| Kol e e i °

Proof Result
u
+ All goals in your proof agenda have been closed.
Provable
NoProofTermProvable(Provable(==> D()>08&D()>zw()&zw()>0&0 < nu&K>0&w()>08&zCr=zw()—>[{{h:=D()-zC
r;sigma:=(D()-zw())/h;alpha:=*;70 < alpha&alpha < 1;zCr:=alpha*zCr; }nu:=+; 7nu>8;dnu:=%; }{{?dnu <
B;a2:=—2+3*nu/ (hsw()) ;a3 :=1-nu/ (haw()) ; ++?dnu>=0; a2 : =—2+3xnu/ (haw()) +dnu/w() ;a3 :=1-nu/ (h=w()) —dnu/
w(); }Ki=hxw()x(sigma+a2*sigma~2+a3*sigma~3); }{zCr'=—zCr&true}}x]|K>@ proved))
Tactic to Reproduce the Proof
implyR(1) ; loop({ K=B8&zw()>=zCr&zCr>0'}, 1) ; <(
QE,
QE,
composeb(1) ; composeb(1) ; assignb(1) ; composeb(1l) ; assignb(1) ; composeb(1) ; randomb(1) ; a
11R(1) ; composeb(1) ; testb(1) ; impLlyR(1l) ; assignb(1) ; composeb(1l) ; composeb(1l) ; randomb(1)
; allR(1) ; composeb(1) ; testb(1) ; implyR(1) ; randomb(1) ; allR{1) ; composeb(1) ; composeb(1)
; choiceb(1) ; composeb(1.8) ; testb(1.@) ; andR(1) ; <(
implyR(1) ; composeb(1) ; assignb(1) ; assignb(1) ; assignb(1) ; boxAnd(1) ; andR(1) ; <(
AWl1)Y + trueTmnlui1) :« 0OF.
KoY @ Browse proof £ Download tactic # Download lemma & Download archive

Hybrid Theorem Proving for Numerical Models

Complementary Technique:
* Provides higher confidence through formal verification.

Limitations to Widespread Use:
* Requires expertise in formal methods and theorem proving.
« Manual proof construction is nontrivial, especially with differential equations.

Practical Implication:
« Valuable for targeted, high-stakes verification,
but unlikely to become a routine day-to-day tool for ESM modelers.

An Alternative: Lightweight Formal Methods with CIVL-C

« More potential to become practical & scalable.
« Developer-friendly syntax.

» CIVL resembles imperative languages.

« Familiar to scientific software developers.

» Efficient Verification Workflow:
» Automated feedback on defects.
« Enables rapid iteration during development.
» No need for full formal proofs at each step.

‘a:‘“ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

1 Sinput int H; 7/ number of outer iterations 40 woid initialCenditions () |
2 Sinput int M; /¢ max number inner iterations 41 Shavec(&tnuj;

3 $input double dt; // delta t 42 Shavee (&dnu) ;

4 Sassume (D<dt && db<l); 43 Shaveci&h)

5 &input double zw, 0, w; 44 Shavoc (&=sigma);

fi Sassume (D>0 L& Drzw k& zw=0 && w>0); 45 Shavee(stalpha);

7 double t=0.0; // time 46 Shaveei(&tzCr);

4 double nu, dnu, h, sigma, alpha, =zCr, K, aZ, a3; 47 Shaveci(&H) ;

g 48 Shaveoci(talZ);
10 double Gidouble sigma, double aZ, double a3) | 45 Shaveci(tal};
11 return sigma + 50 Sassume (I<nu && K>0);
12 aZ+§pow (sigma, 2) + ald«$pow(sigma, 3); 51 Sassume (=Cr == zw];
13} 52}
14 53
15 woid computelNu(veid) | 54 woid printState(wodd) { ... }
16 Shavoc (anu) ; 58
17 Sassume (nu>0) ; 56 int main{wvoid) |
18 Shavoc (adnu) ; 57 printStatel);
19 } 58 initialCenditions();
20 55 for (int 1=0; 1<N; i++) |

CIVL-C model of the KPP defect: 21 woid computeBLD (void) | 60 printState();

22 h =D - zCr; 61 invariant{);
23 sigma = (D - zw}/h; f2 computeBLD () ;
24 Shavoc (salpha); 63 computeNu() ;
25 Sassume (O<alpha && alpha<l); 4 computek () ;
26 zCr = alpha+==zCr; 65 SF zCrf=—zCr ...
27 1 bE int m = Schoose_int (M) ;
28 57 for (int =0; J<m; J++) |
29 wold computeX (veoid) | &8 t += dt;
30 a2z = =2 + 3xpu/fih=w) + donu/w; £ 9 ZCr += —-zCr+dk;
31 ald = 1 - nu/f{hsw) — dnu/w; 0 }
32 K = h=w ~ Gi(sigma, a2, al); 71 b
33) 72 printState();
34 73 invariant (};
35 wolid invariant (void) | T4}
ig Sassert (K>0);
37 Sassert (zw>=zCr);
38 Fassert (zCc>0);
39 |

*"“" \NCF\R Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Our conclusion from the paper:

Using this model, we are able to find the same defect reported in the earlier work. This manifests
as a violation of the assertion K > 0 (line 36) found with N = 2 and M = 1 in less one second. The
model checker also prints the symbolic values of all variables that lead to the violation. When function
computeK is replaced with the corrected version, no violations are found. For N = M = 3, verification
takes 1.5 seconds. This time includes 31 calls to the automated theorem prover Z3 [44], which easily
discharges the assertions. The CIVL approach provides strong evidence for the correctness of the fix,
though not as strong as a formal proof. Nevertheless, it was straightforward to write the model and the
verification process itself is fully automated.

:-s'z_-*,f:: _

*”"" M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

An Alternative: Lightweight Formal Methods with CIVL-C

Limitations of CIVL-C:
« No native support for continuous dynamics or ODEs:

» Continuous evolution must be approximated with discrete schemes
« Limited mathematical rigor compared to theorem provers

* Provides strong evidence, but not formal guarantees.

Bottom Line:
« Strikes a balance between rigor and usability.

‘a:‘“ M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Announcement

November 5-7, 2025

2nd Workshop on Correctness and Reproducibility

for Earth System Software

in conjunction with

Tutorial: Rigor and Reasoning in Research Software

https://ncar.github.io/correctness-workshop/

P, L8
Len M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

Thanks!

altuntas@ucar.edu

'5"" M Specification and Verification for Climate Modeling: Formalization Leading to Impactful Tooling

mailto:altuntas@ucar.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

