
Verifying ParamGen
A Case Study in Scientific Software Abstraction and Modeling

Alper Altuntas1, John Baugh2

1NCAR/CGD
2NCSU

Improving Scientific Software Conference, April 17, 2023, Boulder, CO

Formal Specification

Describing software using a precise and high-level language.

▶ Helps design maintainable and reliable software.

Verifying ParamGen 1 / 31

What is ParamGen?

An infrastructure library that generates default input parameter files for ESM components.

▶ Similar to CIME.nmlgen

▶ Supports any format (not just nml)

▶ Supports any template format (not just xml)

▶ Supports arbitrary Python expressions in template files!

▶ Initially developed for MOM6 in CESM.

▶ Used by MOM6, CAM, NUOPC, and WW3 of CESM.

Verifying ParamGen 2 / 31

What is ParamGen?

An infrastructure library that generates default input parameter files for ESM components.

▶ Similar to CIME.nmlgen

▶ Supports any format (not just nml)

▶ Supports any template format (not just xml)

▶ Supports arbitrary Python expressions in template files!

▶ Initially developed for MOM6 in CESM.

▶ Used by MOM6, CAM, NUOPC, and WW3 of CESM.

Verifying ParamGen 2 / 31

What is ParamGen?

Template

NIHALO: 2

NIGLOBAL:

$OCN_GRID == "g16":

320

$OCN_GRID == "t061":

540

DIABATIC_FIRST:

$OCN_GRID in ["g16","t061"]

High-level configs

OCN_GRID = "t061"

↓

ParamGen.reduce()

−→

Model input file

NIHALO = 2

NIGLOBAL = 540

DIABATIC_FIRST = True

Verifying ParamGen 3 / 31

ParamGen Terminology

label →
guard →
value →

expandable variable →

↓ branch

NIGLOBAL:

$OCN_GRID == "g16":

320

$OCN_GRID

Verifying ParamGen 4 / 31

ParamGen is flexible!

▶ Expandable variables and Python expressions can appear in labels, guards, values.

▶ There can be multiple labels along a branch.

▶ There can be multiple (nested) guards along a branch.

▶ No restriction on the ordering of guards and labels.

Verifying ParamGen 5 / 31

ParamGen schema!

▶ Schema:

▶ There must be at least one label along a branch.
▶ If a key is a guard, all its siblings must also be guards.

invalid!

NIGLOBAL:

description:

"grid points in x-dir."

$OCN_GRID == "g16":

320

valid

NIGLOBAL:

description:

"grid points in x-dir."

value:

$OCN_GRID == "g16":

320

Verifying ParamGen 6 / 31

ParamGen reduce() method

def reduce(data):

if isinstance(data, dict):

(1) Expand vars in keys

data = expand_key_vars(data)

(2) Evaulate guards (if applicable)

if is_guarded_dict(data):

data = impose_guards(data))

(3) Call reduce recursively

else:

for key in data:

data[key] = reduce(data[key])

else:

(4) expand vars, apply formulas

data = expand_vars(data)

return data

▶ Traverse all branches recursively.

▶ Apply in-place modifications:

▶ expand variables.
▶ evaluate formulas.
▶ impose guards.

Verifying ParamGen 7 / 31

How to ensure reliability?

Sources of complexity

▶ Recursive algorithm with in-place data modifications.
▶ Great flexibility in template layout.

Testing

▶ Routine unit and integration tests.

“Testing can be used to show the presence of bugs, but never to show their absence!.”

— Edsger W. Dijkstra

Verifying ParamGen 8 / 31

How to ensure reliability?

Sources of complexity

▶ Recursive algorithm with in-place data modifications.
▶ Great flexibility in template layout.

Testing

▶ Routine unit and integration tests.

“Testing can be used to show the presence of bugs, but never to show their absence!.”

— Edsger W. Dijkstra

Verifying ParamGen 8 / 31

How to ensure reliability?

Sources of complexity

▶ Recursive algorithm with in-place data modifications.
▶ Great flexibility in template layout.

Testing

▶ Routine unit and integration tests.

“Testing can be used to show the presence of bugs, but never to show their absence!.”

— Edsger W. Dijkstra

Verifying ParamGen 8 / 31

Proving programs correct

Formal methods: mathematically rigorous techniques and tools for the specification,
design and verification of software. (Butler, R. W., 2001)

Alloy: an open source language and tool for software modeling.

▶ The Alloy language is simple, precise, powerful, and elegant!
▶ This allows us to model software and algorithms at a high-level.

(at the design level, and above the code level)

Verifying ParamGen 9 / 31

Proving programs correct

Formal methods: mathematically rigorous techniques and tools for the specification,
design and verification of software. (Butler, R. W., 2001)

Alloy: an open source language and tool for software modeling.

▶ The Alloy language is simple, precise, powerful, and elegant!
▶ This allows us to model software and algorithms at a high-level.

(at the design level, and above the code level)

Verifying ParamGen 9 / 31

The Alloy Language
in a few slides

Alloy

A software modeling and analysis tool with a declarative language that combines first-order
logic and relational calculus.

Imperative Programming:

▶ Describes how a program does
something step by step.

▶ Sequential statements change a
program’s state.

Declarative Programming:

▶ Describes what a program
should accomplish.

▶ There is no state changes or
mutation.

Verifying ParamGen 10 / 31

The Alloy Language

Declarative Programming

▶ There is no state changes or mutation.

▶ So, how do we represent dynamic behavior?

x = 0

x' = x+1

Verifying ParamGen 11 / 31

The Alloy Language

Declarative Programming

▶ There is no state changes or mutation.

▶ So, how do we represent dynamic behavior?

x = 0

x' = x+1

actually:

x = 0

x' = x.add[1]

Verifying ParamGen 11 / 31

The Alloy Language

In Alloy, everything is a set! Common operators are reserved for set operations:

+ : set union

− : set difference

= : set equality

& : set intersection

in : subset

Verifying ParamGen 12 / 31

The Alloy Language

▶ In alloy we use signature declarations to introduce concepts (sets of atoms).

sig Value {}

sig Key {

map: Value

}

▶ Signature fields, e.g., map, resemble OOP class members.

k.map // returns the value instance k maps to.

▶ map is a relation:

map : Key -> Value

Verifying ParamGen 13 / 31

The Alloy Language

▶ In alloy we use signature declarations to introduce concepts (sets of atoms).

sig Value {}

sig Key {

map: Value

}

▶ Signature fields, e.g., map, resemble OOP class members.

k.map // returns the value instance k maps to.

▶ map is a relation:

map : Key -> Value

Verifying ParamGen 13 / 31

The Alloy Language

▶ In alloy we use signature declarations to introduce concepts (sets of atoms).

sig Value {}

sig Key {

map: Value

}

▶ Signature fields, e.g., map, resemble OOP class members.

k.map // returns the value instance k maps to.

▶ map is a relation:

map : Key -> Value

Verifying ParamGen 13 / 31

The Alloy Language

In Alloy, everything, including sets, is a relation! Relational operators:

P → Q : arrow product

P.Q : dot product
∧p : transitive closure

∗p : reflexive t.c.

∼ : transpose

<: : domain restriction

:> : range restriction

++ : override

Verifying ParamGen 14 / 31

The Alloy Language

▶ Arrow product:

P → Q : every combination of tuples (p, q) for p ∈ P and q ∈ Q.

▶ Relation multiplicities:

P m → n Q : where m and n are multiplicity keywords: one, lone, some.

▶ Example:

P → lone Q : each member of P maps to zero or one member of Q.

▶ Multi-arity relations:

P → Q → R

Verifying ParamGen 15 / 31

The Alloy Language

▶ Arrow product:

P → Q : every combination of tuples (p, q) for p ∈ P and q ∈ Q.

▶ Relation multiplicities:

P m → n Q : where m and n are multiplicity keywords: one, lone, some.

▶ Example:

P → lone Q : each member of P maps to zero or one member of Q.

▶ Multi-arity relations:

P → Q → R

Verifying ParamGen 15 / 31

The Alloy Language

▶ Arrow product:

P → Q : every combination of tuples (p, q) for p ∈ P and q ∈ Q.

▶ Relation multiplicities:

P m → n Q : where m and n are multiplicity keywords: one, lone, some.

▶ Example:

P → lone Q : each member of P maps to zero or one member of Q.

▶ Multi-arity relations:

P → Q → R

Verifying ParamGen 15 / 31

The Alloy Language

▶ Arrow product:

P → Q : every combination of tuples (p, q) for p ∈ P and q ∈ Q.

▶ Relation multiplicities:

P m → n Q : where m and n are multiplicity keywords: one, lone, some.

▶ Example:

P → lone Q : each member of P maps to zero or one member of Q.

▶ Multi-arity relations:

P → Q → R

Verifying ParamGen 15 / 31

Modeling ParamGen in Alloy
and verifying its correctness

Modeling ParamGen in Alloy

How to model a system in Alloy in an agile and incremental development style:

1. Specify the structure (i.e., the signatures)

2. Specify dynamic behavior.

3. Inspect instances.

4. Eliminate design flaws (e.g., by adding more constraints).

5. Analyze rigorously.

Verifying ParamGen 16 / 31

Modeling ParamGen in Alloy / Structure

Main ParamGen Structure: Template

▶ Stored in nested Python Dictionaries.

{Label, Guard}︸ ︷︷ ︸
key

: {Value, Dict}︸ ︷︷ ︸
value

Verifying ParamGen 17 / 31

Modeling ParamGen in Alloy / Structure

sig Dict {

contents: set Key

}

abstract sig Key {

var map : lone Dict+Value

}

sig Value {}

sig Label extends Key {}

sig Guard extends Key {}

sig Root extends Key {}

{no this.~contents}

Verifying ParamGen 18 / 31

Modeling ParamGen in Alloy / Structure

sig Dict {

contents: set Key

}

abstract sig Key {

var map : lone Dict+Value

}

sig Value {}

sig Label extends Key {}

sig Guard extends Key {}

sig Root extends Key {}

{no this.~contents}

Verifying ParamGen 18 / 31

Modeling ParamGen in Alloy / Structure

sig Dict {

contents: set Key

}

abstract sig Key {

var map : lone Dict+Value

}

sig Value {}

sig Label extends Key {}

sig Guard extends Key {}

sig Root extends Key {}

{no this.~contents}

Verifying ParamGen 18 / 31

Modeling ParamGen in Alloy / Constraints

// each item can have at most one key

all i: Dict+Value |

lone i.~map

// each key can be owned by one dict

all k: Key |

lone k.~contents

// if a dict key is a guard,

// all dict keys must be so.

all d: Dict |

{some Guard & d.contents implies

d.contents in Guard}

Verifying ParamGen 19 / 31

Modeling ParamGen in Alloy / Constraints

// each item can have at most one key

all i: Dict+Value |

lone i.~map

// each key can be owned by one dict

all k: Key |

lone k.~contents

// if a dict key is a guard,

// all dict keys must be so.

all d: Dict |

{some Guard & d.contents implies

d.contents in Guard}

Verifying ParamGen 19 / 31

Modeling ParamGen in Alloy / Constraints

// each item can have at most one key

all i: Dict+Value |

lone i.~map

// each key can be owned by one dict

all k: Key |

lone k.~contents

// if a dict key is a guard,

// all dict keys must be so.

all d: Dict |

{some Guard & d.contents implies

d.contents in Guard}

Verifying ParamGen 19 / 31

Modeling ParamGen in Alloy / Constraints

pred invariants {

// each item can have at most one key

all i: Dict+Value |

lone i.~map

// each key can be contained by only one dict

all k: Key |

lone k.~contents

// if a dict key is a guard, all dict keys must be so.

all d: Dict |

{some Guard & d.contents implies d.contents in Guard}

// map.*contents relation is acyclic

no iden & ^(map.*contents)

// all values must be preceded by a label

all v: Value |

some v.^(~map.*~contents) & Label

}

Verifying ParamGen 20 / 31

Modeling ParamGen in Alloy / Dynamics

pred reduce[data: Dict+Value]{

data in Dict implies {

// (1) Expand vars in keys

expand vars[data.contents]

// (2) Evaluate guards

is_guarded_dict[data] implies

impose guards[data]

// (3) Call reduce recursively

else

all key : data.contents |

key.map' = key.map and

reduce[key.map']

}

else

// (4) Expand vars

expand vars[data]

}

def reduce(data):

if isinstance(data, dict):

(1) Expand vars in keys

data = expand key vars(data)

(2) Evaulate guards (if applicable)

if is_guarded_dict(data):

data = reduce(impose guards(data))

(3) Call reduce recursively

else:

for key in data:

data[key] = reduce(data[key])

else:

(4) expand vars, apply formulas

data = expand vars(data)

return data

Verifying ParamGen 21 / 31

Modeling ParamGen in Alloy / Dynamics

pred reduce[data: Dict+Value]{

data in Dict implies {

// (1) Expand vars in keys

expand vars[data.contents]

// (2) Evaluate guards

is_guarded_dict[data] implies

impose guards[data]

// (3) Call reduce recursively

else

all key : data.contents |

key.map' = key.map and

reduce[key.map']

}

else

// (4) Expand vars

expand vars[data]

}

def reduce(data):

if isinstance(data, dict):

(1) Expand vars in keys

data = expand key vars(data)

(2) Evaulate guards (if applicable)

if is_guarded_dict(data):

data = reduce(impose guards(data))

(3) Call reduce recursively

else:

for key in data:

data[key] = reduce(data[key])

else:

(4) expand vars, apply formulas

data = expand vars(data)

return data

Verifying ParamGen 21 / 31

Modeling ParamGen in Alloy / Dynamics

// Nondeterministically select one of the

// guards and drop all other branches

pred impose_guards[d: Dict]{

let pkey = d.~map {

some g: d.contents {

pkey.map' = g.map and g.map'=none

(d.contents-g).map' =

(d.contents-g).map

reduce[pkey.map']

}

}

}

def impose_guards(self, data_dict):

def _eval_guard(guard):

"""returns true if a guard evaluates to true."""

assert isinstance(

guard, str

), "Expression passed to _eval_guard must be string."

if has_unexpanded_var(guard):

raise RuntimeError("...")

guard_evaluated = eval_formula(guard)

assert isinstance(guard_evaluated, bool)

return guard_evaluated

if not ParamGen.is_guarded_dict(data_dict):

return data_dict

guards_eval_true = [] # list of guards that evaluate to true.

for guard in data_dict:

if guard == "else" or _eval_guard(str(guard)) is True:

guards_eval_true.append(guard)

if len(guards_eval_true) > 1 and "else" in guards_eval_true:

guards_eval_true.remove("else")

elif len(guards_eval_true) == 0:

return None

if self._match == "first":

return data_dict[guards_eval_true[0]]

if self._match == "last":

return data_dict[guards_eval_true[-1]]

raise RuntimeError("Unknown match option.")

Verifying ParamGen 22 / 31

Modeling ParamGen in Alloy / Dynamics

let expand_vars[expr]{

no expr & varsToExpand'

}

def expand_vars(expr, expand_func):

if expand_func is None:

return expr

assert isinstance(

expr, str

), "Expression passed to expand_vars must be string."

expandable_vars = re.findall(r"(\$\w+|\${\w+\})", expr)

for word in expandable_vars:

ws = word.strip().\

replace("$", "").replace("{", "").replace("}", "")

word_expanded = expand_func(ws)

assert (

word_expanded is not None

), "Cannot determine the value of {}.".format(word)

enclose with quotes if expanded var is a string...

if isinstance(word_expanded, str) and word[1] != "{":

word_expanded = '"' + word_expanded + '"'

else:

word_expanded = str(word_expanded)

expr = re.sub(

r"(\$\b" + ws + r"\b|\$\{" + ws + r"\})",

word_expanded, expr,

)

return expr

Verifying ParamGen 23 / 31

Modeling ParamGen Dynamics in Alloy / Abstract Representation

▶ Abstract representation of lower-level details allows us to focus on high-level software and
algorithm design aspects.

▶ Quick prototyping and early detection of design flaws!
▶ Incremental modeling!

Verifying ParamGen 24 / 31

Modeling ParamGen Dynamics in Alloy / Abstract Representation

“The hard part of building software is the specification, design, and testing of conceptual
construct, not the labor of representing it and testing the fidelity of the representation.”

— FP Brooks. “No silver bullet”. (1987)

“What matters is the fundamental structure of the design. If you get it wrong, there is no
amount of bug fixing and refactoring that will produce a reliable, maintainable, and usable
system.”

— D Jackson. “The essence of software”. (2021)

Verifying ParamGen 25 / 31

Modeling ParamGen Dynamics in Alloy / Abstract Representation

“The hard part of building software is the specification, design, and testing of conceptual
construct, not the labor of representing it and testing the fidelity of the representation.”

— FP Brooks. “No silver bullet”. (1987)

“What matters is the fundamental structure of the design. If you get it wrong, there is no
amount of bug fixing and refactoring that will produce a reliable, maintainable, and usable
system.”

— D Jackson. “The essence of software”. (2021)

Verifying ParamGen 25 / 31

Back to ParamGen Dynamics...

Verifying ParamGen 26 / 31

Bounded Model Checking

reduce[r] implies {

invariants and // All invariants still remain true

r.map' in Dict // The result of postcondition should be a dict

all ai: r.*(map'.*contents) { // check active columns

// all labels map to some Values or Dictionaries

{ai in Label implies ai.map in Value+Null+Dict}

// no active guard remains

ai not in Guard

// all keys should lead to a value

{ai in Key implies some ai.^(map.*contents) & Value}

// all values should have a label (varname)

{ai in Value implies some ai.^(~map.*~contents) & Label}

// no remaining vars to expand

ai not in VarsToExpand'}

}

Verifying ParamGen 27 / 31

Bounded Model Checking

Verifying ParamGen 28 / 31

Specifying a system helps us understand it.

“It’s a good idea to understand a system before building it, so it’s a good idea to write a
specification of a system before implementing it.”

— L Lamport. “Specifying Systems”. (2002)

“Code is a poor medium for exploring abstractions.”

— D Jackson. “Software Abstractions”. (2006)

Verifying ParamGen 29 / 31

Specifying Scientific Software

▶ Specifying a system beforehand is not always possible in computational science.

▶ Sometimes, we are handed over pre-developed code for integration.
▶ Sometimes, complexity is underestimated and/or targets change.
▶ Often, we work with legacy code.

▶ Specification and modeling may be useful at later stages of development as well.

▶ Modeling ParamGen in Alloy helped me better understand it (even though I was the
original developer).

▶ After developing the Alloy model of ParamGen:

▶ I refactored the reduce() method and halved the LOC.
▶ I have identified flaws in template handling and sanity checks.

Verifying ParamGen 30 / 31

Specifying Scientific Software

▶ Specifying a system beforehand is not always possible in computational science.

▶ Sometimes, we are handed over pre-developed code for integration.
▶ Sometimes, complexity is underestimated and/or targets change.
▶ Often, we work with legacy code.

▶ Specification and modeling may be useful at later stages of development as well.

▶ Modeling ParamGen in Alloy helped me better understand it (even though I was the
original developer).

▶ After developing the Alloy model of ParamGen:

▶ I refactored the reduce() method and halved the LOC.
▶ I have identified flaws in template handling and sanity checks.

Verifying ParamGen 30 / 31

Specifying Scientific Software

▶ Specifying a system beforehand is not always possible in computational science.

▶ Sometimes, we are handed over pre-developed code for integration.
▶ Sometimes, complexity is underestimated and/or targets change.
▶ Often, we work with legacy code.

▶ Specification and modeling may be useful at later stages of development as well.

▶ Modeling ParamGen in Alloy helped me better understand it (even though I was the
original developer).

▶ After developing the Alloy model of ParamGen:

▶ I refactored the reduce() method and halved the LOC.
▶ I have identified flaws in template handling and sanity checks.

Verifying ParamGen 30 / 31

Summary

Formal specification and software modeling can help us develop:

▶ Reliable software.

▶ Testing is crucial, but incomplete.
▶ Formal methods can be complementary to testing.

▶ Maintainable and efficient software.

▶ Scientists and engineers are accustomed to working with models anyway.
▶ With automatic, push-button analysis, one can focus on modeling and design

aspects.
▶ Design aspects matter. More so than lower level implementation details.

Verifying ParamGen 31 / 31

Announcement

November 9-10, 2023

Workshop on Correctness and Reproducibility
for Climate and Weather Software

website: ncar.github.io/correctness-workshop/

Scope: Testing, Statistical Approaches, Formal Methods, Verification and Validation...

Venue: NCAR Mesa Lab & Virtual

Thanks!
altuntas@ucar.edu

