Hybrid theorem proving as a lightweight method

for verifying numerical software

Alper Altuntas ! John Baugh 2

altuntas@ucar.edu, jwb@ncsu.edu
INational Center for Atmospheric Research, Boulder, CO

2North Carolina State University, Raleigh, NC

Correctness'18
November 12, 2018
Dallas, TX

B NCAR

NC STATE UNIVERSITY

Numerical Software Verification

» The accuracy of physical models depend on:
1. Convergence of numerical methods.

2. Correctness of realization in software:

» Complicated by intermittent discrete updates.

» This study presents:
» A lightweight verification approach for (2).

Altuntas and Baugh

Hybrid Theorem Proving
A formal verification technique for cyber-physical systems.

Hybrid Theorem Proving

» Cyber-physical systems are compositions of:

1. Real world physics
continuous evolution

2. Computer sampling (sensors) and intervention (actuators)
discrete changes

» Examples: self-driving cars, ATC, robots, etc.
» Verification tools: hybrid theorem provers, e.g., KeYmaera X

» Hybrid programs that model cyber-physical systems:

1. ODEs model real world physics.
2. Discrete programs model computer intervention.

Altuntas and Baugh

Hybrid Theorem Proving

Continuous Evolution + Intermittent Discrete Changes

» Continuous evolution:

ox Ov
N ot ar ¢

Discrete change:

v

V.= —V

L

t3 ta 65t

L=z s

Platzer, A. " Logical Foundations of Cyber-Physical Systems.” (2018)

Altuntas and Baugh

Hybrid Theorem Proving

A hybrid model:

(0 < x < Xmax) —

[

initial conditions
execution begins
continuous evolution
discrete assignment
loop or terminate

postcondition

where x is altitude, v is velocity, a is acceleration.

Altuntas and Baugh

Hybrid Theorem Proving

A hybrid model:

(0 < x < Xmax) —

[

over some At { {X'=v,v =—g}
instantaneous { vVi=—v,
}]
(0 < x < Xiax)

initial conditions
execution begins
continuous evolution
discrete assignment
loop or terminate

postcondition

where x is altitude, v is velocity, a is acceleration.

Altuntas and Baugh

Hybrid theorem proving for verifying numerical software
A lightweight formal methods approach

Hybrid theorem proving for verifying numerical software

» Based on viewing numerical models as a hybrid system.
1. Continuous processes: differential equations (DEs) solved by the model.
e.g., evolution of water surface height

2. Discrete updates: often arise from ad-hoc and empirical modeling.
e.g., a location becoming wet/dry

» DEs are discretized in time and space, yet they may taken to be continuous.

» to abstract away from numerical methods.
» to focus on discrete decisions and updates.

Altuntas and Baugh

Hybrid theorem proving for verifying numerical software

Water surface elevations

elevation {m)
[=]

i,

-3

Water surface

T
26

Altuntas and Baugh

T
28

T
30
distance (m)

T
32

T
34

)

-3

Hybrid theorem proving for verifying numerical software

Water surface elevations

elevation (m)
o

i,

-3

Water surface

T
26

Altuntas and Baugh

T
28

T
30
distance (m}

T
32

T
34

)

-3

Hybrid theorem proving for verifying numerical software

Altuntas and Baugh

elevation {m)

-3

Water surface elevations

Water surface

Make wet!

T
26

T T
28 30
distance (m)

T
32

T
34

]

-3

Hybrid theorem proving for verifying numerical software

Altuntas and Baugh

elevation (m)

Water surface elevations

-3

Water surface

T
26

T T
28 30
distance (m}

T
32

T
34

-3

Hybrid theorem proving for verifying numerical software

Water surface elevations

| I i
’ Water surface Make wet! 2

R

elevation {m)
[=]

o0
] 200 -

-3 T T T T T -3
26 28 30 32 34
distance (m)

Altuntas and Baugh

Hybrid theorem proving for verifying numerical software

Altuntas and Baugh

elevation (m)

Water surface elevations

-3

Water surface

T
26

T T
28 30
distance (m}

T
32

T
34

-3

Hybrid theorem proving for verifying numerical software

1-D shallow water equations:

y_ _Ouh
n = VR

» In an actual numerical model, discretize both in time and space:

L (T

» In a hybrid verification model, discretize in space only:

n = <(Uh)i+1 - (Uh)i—1> /(Ax), ...

where 7 is water elevation, h is water height, u is velocity.

Altuntas and Baugh

Hybrid theorem proving for verifying numerical software

Abstract discrete grids:

» Small discrete grids for tractability.
» Non-determinism to represent external states.

Rationale: By the CFL condition, domain of dependence is limited.

Altuntas and Baugh

Hybrid theorem proving for verifying numerical software

Hybrid model of the 1-D wetting and drying:

initial Conditions() — initial condition
[{ execution begins
{7 = (uhiy1 — uhi_1)/(Ax),..} continuous evolution
wettingDrying(); discrete assignment

3] loop or terminate
safetyCondition() postcondition

where 1) is water elevation, h is water height, u is velocity.

Altuntas and Baugh

Hybrid theorem proving for verifying numerical software

Key elements of the abstraction approach:

» View numerical software as a hybrid system.
» Model PDEs as continuous in time and discrete in space
(as in the method of lines).

» Incorporate discrete updates.
» Work with small, discrete grids.

Altuntas and Baugh

10

Test Case: The Keymaera X Model of the KPP scheme
Application of hybrid theorem proving in Earth System Modeling

Test Case: The Keymaera X Model of the KPP scheme

» A test case involving a large-scale numerical software:

» CESM: A leading climate model developed by NCAR.
» MOMBG6: The future ocean component of CESM.

» Main Project: Coupling of MOM6 in CESM

» The KPP scheme recently incorporated in MOM6.
» An unphysical behavior when KPP matching is turned on!

Altuntas and Baugh

11

Test Case: The Keymaera X Model of the KPP scheme

Earth System Models:

» HPC software that simulate Earth's
Vertical Grid
(Height or Pressure) |~

climate.

> Components: atmosphere, ocean,
ice, land, etc.

» Differential equations that
model physical, chemical, and
biological processes.

» Millions of core-hours!

https://celebrating200years.noaa.gov/breakthroughs/climate_model /

Altuntas and Baugh 12

Test Case: The Keymaera X Model of the KPP scheme

Global Ocean Models:
» The 3D primitive equations.
» Finite difference approximations.

» Subgrid-scale processes included as
parameterizations. Example:
» KPP scheme parameterizes
ocean mixing due to vertical
turbulent fluxes in the OBL.

Altuntas and Baugh

Horizontal resolution of workhorse
ocean grids are ~ 1° x 1°

b3
SN

Depth in Meters
200 300 400 450 500 550 600 700 800 900 1000 1300 1600 2000 2500 2750 3000 3500

20 25 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
Vertical Level

Briegleb et al. (2010, NCAR Tech. Note)

13

Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme

» The continuous evolution of a scalar quantity A\ over a vertical water column:

v

v

v

Altuntas and Baugh

o 0 ——

The unresolved turbulent flux parameterized as a diffusive process (Griffies et al., 2015):

— oX
WA= —Ka(52 + 1)

The diffusivity Ky at depth d within the OBL (Large et al., 1994):

KA =h- W,\(O') . GA(O')

Shape function for the OBL diffusivities:

G)\(O') = ap+ a10 + 220'2 =+ 330'3

(4)

(5)

14

Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme
» Compute the ocean boundary layer (OBL) depth.
» Compute the diffusivities within ocean interior.
» Compute the OBL diffusivities (no matching).

Depth

Altuntas and Baugh

surface

—— OBL base

~— ——— bottom

z

<

OBL diffusivities (no matching)

Interior diffusivities

diffusivity (m?/s)

15

Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme

» Compute the ocean boundary layer (OBL) depth.
» Compute the diffusivities within ocean interior.
» Compute the OBL diffusivities (matching).

z

surface /

—— OBL base 7

Depth Matched diffusivities

bottom diffusivity (m?/s)

Altuntas and Baugh

16

Test Case: The Keymaera X Model of the KPP scheme

» Undesired behavior:
» Matching algorithm leads to negative diffusivities in OBL.
» Debugging:
» Via an interactive debugger.
» Took several days and thousands of CPU hours.
» Fix:
» Modify the matching algorithm for cases where the interior diffusivity
gradient is negative.

» Verification:
» A KeYmaera X model of the KPP scheme.

Altuntas and Baugh 17

Test Case: The Keymaera X Model of the KPP scheme

The hybrid model of the KPP scheme:

initialConditions() —
[
compute_OBL _depth, // discrete updates
compute_interior_K;
compute_OBL_K;
{z], = -z} // continuous system
3]

K>0

timestep

where K is diffusivity and z., is the depth at which Rig is equal to Ri,.

Altuntas and Baugh

18

Test Case: The Keymaera X Model of the KPP scheme

The hybrid model of the KPP scheme:

initialConditions() —
[
compute_OBL _depth, // discrete updates
instantaneous compute_interior_K;
compute_OBL_K;
over some At { {z], = -z} // continuous system
3]

K>0

where K is diffusivity and z., is the depth at which Rig is equal to Ri,.

Altuntas and Baugh

19

Test Case: The Keymaera X Model of the KPP scheme

Continuous evolution of z., + discrete changes:

z
—— —— surface
—-— interface Zw D—h
- z! z
- cr
D Zu B cr
—— =+—— bottom time
to h t2 t3

Altuntas and Baugh

20

Test Case: The Keymaera X Model of the KPP scheme

The KeYmaera X proof process:
1. Develop the hybrid model of the KPP scheme
2. Reproduce the undesired behavior via a custom proof tactic:

» Conventional logical assertions and rules, e.g.,
» loop invariants

» as well as differential dynamic logic rules, e.g.,
» differential invariants

3. Apply the fix in the matching algorithm: match gradients only if
interiorgradients are non-negative.

4. Re-run the proof tactic and confirm that undesired behavior is eliminated.

Altuntas and Baugh 21

KeYmaera X Ul:
Develop the hybrid model.

Altuntas and Baugh

® 0 ® [y kermaerax x 4+

<« C ® 1270.0.1:8090/dashboard.htmi?#/models

kpp_matching_faulty

KK 7% UITTUSIVITY @t INTETTACE ¥/

/* shape function coefficients x/
R a2.
R a3.

R nu. /% interior diffusivity at sigma=1x/
R dnu. /% interior diffusivity gradiant at sigma=lx/
End.

Problem.
initialConditions() ->

[

* @0 a @

Edit

1{
/% 1. DDAs: */
computeBLD;
computeNu;
computeK;

/% 2. Continuous system: %/

{zCr' = —zCr}
}x@invariant(K>0 & zw()>=zCr & zCr>0)
1(k-0)

22

KeYmaera X Ul:
Construct a proof.

Altuntas and Baugh

® 0 ® [y kermaerax x 4+

<« C @ 1270.0.1:8090/dashboard.htmi?#/proofs/109

KeYmaera X

kpp_matching,

fautty: Proof 3

» Auto 10 Unfold # Prop-Auto ¥ Simplify D Step back # Edit

Propositional -~ Quantifiers - Hybrid Programs - Differential Equations ~ Closing ~ Inspect ~

M PR |

(D-zw)/h ;
1?nu>0;dnus=*; 2+3"nu/(h*w)+dnu/w ; a3 := 1-nu/ih*w)-dnu/w ; K
hw*(sigma-+a2°sigma~2+a3"sigma3) ; }{ 2Cr' = zCr&true }}*]1 K> 0

Proof Progra... Rerun | Fresh steps Execute: | Atomic | Step-by-Step

nil

KeYmaera X version 4.4.3 (version 4.6.1 is now available from KeYmaeraX.org). © Logical Systems Lab, Carnegie Mellon University 2017

23

KeYmaera X Ul:
Steer the proof.

Altuntas and Baugh

® 0 ® [y kermaerax x 4+
<« C @ 1270.0.1:8090/dashboard.htmi?#/proofs/109 % © 0 @ o
KeYmaera X
» Auto T Unfold # Prop-Auto »* Simplify D Step back # Edit # Browse =
Propasitional ~ Quantifiers ~ Hybrid Programs ~ Differential Equations ~ Closing ~ Inspect ~
= D>0AD>zwazw>0A0<nuaK>0Aw>0azCr=2zw — [{{h:=D-zCr;
. sigma:= (D-zwyn ; alpha :=* ;7 0 <alpha alpha < 1; 2Cr := alpha"zCr ; }{nu
=% 200> 0 dnu t=*; H{ a2 1= -2+3'nu/(h*w)+dnudw ; a3 1= 1-nuh*w)-dnudw ;
K = h"w(sigma+a2°sigma’2+a3'sigman3) ; } {zCr' = -2Cr &true }}* 1 K> 0
® -
x
Proof F =
Loop Induction 1loop - yep
roe K>08zv A
it K>08zw(>=z... + fa] K>0daw()>=z.
K>08zw(>=z.. P
r r [P, A
[steraten Hai¥1P o> Palalie} P
Godel/Vacuous o =
KeYmaeraXvel 14 poxd
Search Browse... = Apply Lemma

24

KeYmaera X Ul:
Generate counter-example
if formula is invalid.

Altuntas and Baugh

L]
&«

® [Kevmaerax x 4+

C @ 1270¢

Counter-example search result

@ Formula not valid, found a counter-example
LR TR V-I} s a2 11

11 w2 1 -8

Counter-example values

h 1
nu o1
zCr 1 172
w 1
zCr 0 1/4
dnu -8
w1
D 32
alpha 172
K 1

:8000/dashboard.htmi?#/proofs/103

1

(K>0Azw()22Cr_14zCr_1>0)AD (1>04D (>zw()azw(>0aw(>0ah=D (-zCr_1A(0 < alphasalpha < 1)zCr_O=alphazCr_1Anu>0—strue—(

1 a1 1 11
hw)*(D (-zwllh+(-2+3 nuhwO)+dnuAw() (D 0-zw)2+(1-nu/hwO)-dnuaw()(D (-zwOVh)3)>0c-false)

182 12 e iR LT R AR

TRBTPR(T)
QE

7 100p({ Y>0&ZwW()>=ZCT&ZCT>0 ¥, 1) 7

25

KeYmaera X Ul:
Close the proof.

Altuntas and Baugh

® 0 ® [y kermaerax x 4+

<« C @ 1270.0.1:8090/dashboard. htmlI?#/proofs/97 ¥ ©® 0 a o

T ————

Proof Result

v All goals in your proof agenda have been closed.

Provable

> D()>06D()>2w()&zw()>088 < nuUEK>0&w()>8&2Cr=2w()->[{{h:=D()-2zC
risigma:=(D()-2w())/h;alpha: 0 < alphaSalpha < 1;zCr:=alpha*zCr; }Hnu:=+; ?nu=0;dnu:=+; H{?dnu <
0;a2:=-2+3%nu/(hsw()) ;a3:=1-nu/ (hxw()) ;++2dnu>=0;a2:=-2+3*nu/ (haw()) +dnu/w();a3:=1-nu/ (haw()) -dnu/
w(); Mz =hsw()*(sigma+a2#sigma~2+ad+sigma~3) ; }{zCr'=-2Cr&t rue}}+1K>0 proved))

NoProofTermProvable(Provable(

Tactic to Reproduce the Proof

implyR(1) ; loop({ K>@&zw()>=2Cr&zCr>0"}, 1) ; <(

QE,

QE,

composeb(1) ; composeb(1) ; assignb(1) ; composeb(1) ; assignb(1) ; composeb(1) ; randomb(1) ; a
11R(1) ; composeb(1) ; testb(1) ; implyR(1) ; assignb(1) ; composeb(1) ; composeb(l) ; randomb(1)
; allR(1) ; composeb(1) ; testb(1) ; implyR(1) ; randomb(1) ; allR{(1) ; composeb(1) ; composeb(1)
; choiceb(1) ; composeb(1.8) ; testb(1.8) ; andR(1) ; <(

implyR(1) ; composeb(1) ; assignb(1) ; assignb(1) ; assignb(1) ; boxAnd(1) ; andR(1) ; <(
A1)+ trueTanlu(1) : OF.

Ke) @ Browse proof & Download tactic # Download lemma & Download archive

26

Conclusions

» A lightweight formal methods application.
» Highly efficient compared to testing.
» Provides more confidence.

» Generality (due to nondeterminism)

» The coverage in the temporal dimension is much greater.
» Limitations:

» floating point arithmetic
» numerical issues

Altuntas and Baugh

27

Thanks

altuntas@ucar.edu, jwb®@ncsu.edu

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	2.50:
	2.51:
	2.52:
	2.53:
	2.54:
	2.55:
	2.56:
	2.57:
	2.58:
	2.59:
	2.60:
	2.61:
	anm2:

