Hybrid theorem proving as a lightweight method for verifying numerical software

Alper Altuntas ¹ John Baugh ²

altuntas@ucar.edu, jwb@ncsu.edu

¹National Center for Atmospheric Research, Boulder, CO ²North Carolina State University, Raleigh, NC

> Correctness'18 November 12, 2018 Dallas, TX

Numerical Software Verification

- The accuracy of physical models depend on:
 - 1. Convergence of numerical methods.
 - 2. Correctness of realization in software:
 - Complicated by intermittent discrete updates.
- This study presents:
 - A lightweight verification approach for (2).

A formal verification technique for cyber-physical systems.

Cyber-physical systems are compositions of:

- 1. Real world physics continuous evolution
- 2. Computer sampling (sensors) and intervention (actuators) *discrete changes*
- Examples: self-driving cars, ATC, robots, etc.
- ▶ Verification tools: hybrid theorem provers, e.g., KeYmaera X
- Hybrid programs that model cyber-physical systems:
 - 1. ODEs model real world physics.
 - 2. Discrete programs model computer intervention.

Platzer, A. "Logical Foundations of Cyber-Physical Systems." (2018)

Continuous evolution:

$$\frac{\partial x}{\partial t} = v, \frac{\partial v}{\partial t} = -g$$

- Discrete change:
 - v := -v

A hybrid model:

 $\begin{array}{ll} (0 \leq x \leq x_{max}) \rightarrow & initial \ conditions \\ [\{ & execution \ begins \\ \{x' = v, v' = -g\} & continuous \ evolution \\ v := -v; & discrete \ assignment \\ \}^*] & loop \ or \ terminate \\ (0 \leq x \leq x_{max}) & postcondition \end{array}$

where x is altitude, v is velocity, a is acceleration.

A hybrid model:

where x is altitude, v is velocity, a is acceleration.

Hybrid theorem proving for verifying numerical software A lightweight formal methods approach

- Based on viewing numerical models as a hybrid system.
 - 1. **Continuous processes:** differential equations (DEs) solved by the model. e.g., evolution of water surface height
 - 2. **Discrete updates:** often arise from ad-hoc and empirical modeling. e.g., a location becoming wet/dry
- ▶ DEs are discretized in time and space, yet they may taken to be continuous.
 - to abstract away from numerical methods.
 - ▶ to focus on discrete decisions and updates.

1-D shallow water equations:

$$\gamma' = -\frac{\partial uh}{\partial x}, \dots \tag{1}$$

In an actual numerical model, discretize both in time and space:

$$\frac{\eta_i^{n+1} - \eta_i^n}{\Delta t} = \left((uh)_{i+1}^n - (uh)_{i-1}^n \right) / (\Delta x), \dots$$
(2)

In a hybrid verification model, discretize in space only:

$$\eta' = \left((uh)_{i+1} - (uh)_{i-1} \right) / (\Delta x), \dots$$
(3)

where η is water elevation, h is water height, u is velocity.

Abstract discrete grids:

- Small discrete grids for tractability.
- ▶ Non-determinism to represent external states.

Rationale: By the CFL condition, domain of dependence is limited.

Hybrid model of the 1-D wetting and drying:

 $\begin{array}{ll} \mbox{initialConditions()} \rightarrow & \mbox{initial condition} \\ [\{ & execution begins \\ & \{ \eta' = (uh_{i+1} - uh_{i-1})/(\Delta x), ... \} & \mbox{continuous evolution} \\ & \mbox{wettingDrying();} & \mbox{discrete assignment} \\ & \}^*] & \mbox{loop or terminate} \\ & \mbox{safetyCondition()} & \mbox{postcondition} \end{array}$

where η is water elevation, h is water height, u is velocity.

Key elements of the abstraction approach:

- ► View numerical software as a hybrid system.
- Model PDEs as continuous in time and discrete in space (as in the method of lines).
- Incorporate discrete updates.
- ► Work with small, discrete grids.

Test Case: The Keymaera X Model of the KPP scheme Application of hybrid theorem proving in Earth System Modeling

- ► A test case involving a large-scale numerical software:
 - **CESM**: A leading climate model developed by NCAR.
 - MOM6: The future ocean component of CESM.
- ► Main Project: Coupling of MOM6 in CESM
 - The KPP scheme recently incorporated in MOM6.
 - An unphysical behavior when KPP matching is turned on!

Earth System Models:

- HPC software that simulate Earth's climate.
- Components: atmosphere, ocean, ice, land, etc.
- Differential equations that model physical, chemical, and biological processes.
- Millions of core-hours!

 $https://celebrating 200 years.noaa.gov/breakthroughs/climate_model/$

Global Ocean Models:

- ▶ The 3D primitive equations.
- ► Finite difference approximations.
- Subgrid-scale processes included as parameterizations. Example:
 - KPP scheme parameterizes ocean mixing due to vertical turbulent fluxes in the OBL.

Horizontal resolution of workhorse ocean grids are $\sim 1^\circ \times 1^\circ$

200 300 400 450 500 550 600 700 800 900 1000 1300 1600 2000 2500 2750 3000 3500

Briegleb et al. (2010, NCAR Tech. Note)

The KPP scheme

• The continuous evolution of a scalar quantity λ over a vertical water column:

$$\frac{\partial \overline{\lambda}}{\partial t} = \frac{\partial}{\partial z} (\overline{w'\lambda'} + \overline{w}\,\overline{\lambda}) \tag{4}$$

▶ The unresolved turbulent flux parameterized as a diffusive process (Griffies et al., 2015):

$$\overline{w'\lambda'} = -K_{\lambda}(\frac{\partial\overline{\lambda}}{\partial z} + \gamma_{\lambda})$$
(5)

• The diffusivity K_{λ} at depth *d* within the OBL (Large et al., 1994):

$$K_{\lambda} = h \cdot w_{\lambda}(\sigma) \cdot G_{\lambda}(\sigma)$$
(6)

Shape function for the OBL diffusivities:

$$G_{\lambda}(\sigma) = a_0 + a_1\sigma + a_2\sigma^2 + a_3\sigma^3$$
(7)

The KPP scheme

- ► Compute the ocean boundary layer (OBL) depth.
- Compute the diffusivities within ocean interior.
- Compute the OBL diffusivities (no matching).

The KPP scheme

- ► Compute the ocean boundary layer (OBL) depth.
- Compute the diffusivities within ocean interior.
- Compute the OBL diffusivities (matching).

Undesired behavior:

Matching algorithm leads to negative diffusivities in OBL.

Debugging:

- Via an interactive debugger.
- Took several days and thousands of CPU hours.

► Fix:

 Modify the matching algorithm for cases where the interior diffusivity gradient is negative.

Verification:

A KeYmaera X model of the KPP scheme.

The hybrid model of the KPP scheme:

where K is diffusivity and z_{cr} is the depth at which Ri_B is equal to Ri_{cr} .

The hybrid model of the KPP scheme:

where K is diffusivity and z_{cr} is the depth at which Ri_B is equal to Ri_{cr} .

Continuous evolution of z_{cr} + discrete changes:

The KeYmaera X proof process:

- 1. Develop the hybrid model of the KPP scheme
- 2. Reproduce the undesired behavior via a custom proof tactic:
 - Conventional logical assertions and rules, e.g.,
 - loop invariants
 - ▶ as well as differential dynamic logic rules, e.g.,
 - differential invariants
- 3. Apply the fix in the matching algorithm: match gradients only if interiorgradients are non-negative.
- 4. Re-run the proof tactic and confirm that undesired behavior is eliminated.

KeYmaera X UI: Develop the hybrid model.

VmaaraV	Madala Draef	_							Thomas		Liele		~	
Ymaera X	Models Proof	8							I neme	Ŧ	Help	*	0	
pp_match	ning_faulty												1	E
к к.	/* aittus	sivity at	inter	Tace */	,									
/* shape f	unction coeff:	icients *	</td <td></td>											
R a2.			,											
R a3.														
R nu.	/* inter:	ior diffu	usivitv	at sia	ama=1*/	/								
R dnu.	/* interio	or diffus	ivity	gradian	nt at s	sigma=1*	/							
End.														
Problem.														
initialCon	ditions() ->													
[
{	DD													
/* 1.	DDAs: */													
compu	teNu:													
compu	teK;													
/* 2.	Continuous sy	/stem: */	'											
{zur	= -z(r)	De-zCr &	- 2000											
](K>0)		//-201 0	20120	<u>/</u>				 						
End														

KeYmaera X UI: Construct a proof.

KeYmaera X UI:

Generate counter-example if formula is invalid.

Formula not valid, formula	und a counter-example	
1 1 1/2 1/2 (K>0∧zw()≥zCr_1∧zCr_1>(1 1 3/2 1 1 1 h*w()*((D ()-zw())/h+(-2+3*r	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	1/2 1/4 1/2 1/2 1 a.a.alpha < 1)∧zCr_0=alpha*zCr_1∧nu>0→true→(a/2 1 1 D ()-zw())/h)^3)>0++faise)
Counter-example valu	15	
h	1	
nu zCr_1	1 1/2	
zw	1	
zCr_0	1/4	
dnu	-8	
D	3/2	
alpha	1/2	
K I I I I I I I I I I I I I I I I I I I	1	

KeYmaera X UI:

Close the proof.

Pr	oof Result									
✔ / Pro	Il goals in your proof agen vable	da have been	closed.							
Ni O W	<pre>ProofTermProvable(P sigma:=(D()-zw())/h a2:=-2+3*nu/(h*w()));}K:=h*w()*(sigma+</pre>	rovable(= ;alpha:=*; ;a3:=1-nu/ a2*sigma^2-	==> D()>€ 10 < alpha h*w());++ a3*sigma′	0&D()>zw()&z aα < 1; +?dnu>=0;a2: ^3);}{zCr'=-	:w()>0&0 < nu zCr:=alpha*z =−2+3*nu/(h* -zCr&true}}*)	ι&K>0&w()>0 zCr;}{nu:=* wu())+dnu/w K>0 proved	&zCr=zw()-> ;?nu>0;dnu:= ();a3:=1-nu/))	[{{h:=D ≫;}{{? ′(h*w()	()-zi 'dnu -)-dni	C < u/
Ta	<pre>plyR(1) ; loop({`K></pre>	e Proof 0&zw()>=zCi	&zCr>0`},	, 1) ; <(
	QE, QE, composeb(1) ; compo R(1) ; composeb(1)	seb(1) ; as ; testb(1)	signb(1) ; implyR	; composeb((1) ; assigr lvR(1) : rar	1) ; assignt b(1) ; compo	o(1) ; comp oseb(1) ; c UlR(1) : co	oseb(1) ; ra omposeb(1) ; mposeb(1) ;	andomb(rando compos	1) ; mb(1 eb(1	a))

Conclusions

- A lightweight formal methods application.
- Highly efficient compared to testing.
- Provides more confidence.
 - Generality (due to nondeterminism)
 - ▶ The coverage in the temporal dimension is much greater.
- Limitations:
 - floating point arithmetic
 - numerical issues

Thanks

altuntas@ucar.edu, jwb@ncsu.edu