
Hybrid theorem proving as a lightweight method
for verifying numerical software

Alper Altuntas 1 John Baugh 2

altuntas@ucar.edu, jwb@ncsu.edu

1National Center for Atmospheric Research, Boulder, CO
2North Carolina State University, Raleigh, NC

Correctness’18
November 12, 2018

Dallas, TX



Numerical Software Verification

I The accuracy of physical models depend on:

1. Convergence of numerical methods.

2. Correctness of realization in software:

I Complicated by intermittent discrete updates.

I This study presents:
I A lightweight verification approach for (2).

Altuntas and Baugh 1



Hybrid Theorem Proving
A formal verification technique for cyber-physical systems.



Hybrid Theorem Proving

I Cyber-physical systems are compositions of:

1. Real world physics
continuous evolution

2. Computer sampling (sensors) and intervention (actuators)
discrete changes

I Examples: self-driving cars, ATC, robots, etc.
I Verification tools: hybrid theorem provers, e.g., KeYmaera X

I Hybrid programs that model cyber-physical systems:

1. ODEs model real world physics.

2. Discrete programs model computer intervention.

Altuntas and Baugh 2



Hybrid Theorem Proving

Continuous Evolution + Intermittent Discrete Changes

Platzer, A. ”Logical Foundations of Cyber-Physical Systems.” (2018)

I Continuous evolution:

∂x

∂t
= v ,

∂v

∂t
= −g

I Discrete change:

v := −v

Altuntas and Baugh 3



Hybrid Theorem Proving

A hybrid model:

(0 ≤ x ≤ xmax)→ initial conditions[
{ execution begins

{x ′ = v , v ′ = −g} continuous evolution

v := −v ; discrete assignment

}∗
]

loop or terminate

(0 ≤ x ≤ xmax) postcondition

where x is altitude, v is velocity, a is acceleration.

Altuntas and Baugh 4



Hybrid Theorem Proving

A hybrid model:

over some ∆t

instantaneous

(0 ≤ x ≤ xmax)→ initial conditions[
{ execution begins

{x ′ = v , v ′ = −g} continuous evolution

v := −v ; discrete assignment

}∗
]

loop or terminate

(0 ≤ x ≤ xmax) postcondition

where x is altitude, v is velocity, a is acceleration.

Altuntas and Baugh 5



Hybrid theorem proving for verifying numerical software
A lightweight formal methods approach



Hybrid theorem proving for verifying numerical software

I Based on viewing numerical models as a hybrid system.

1. Continuous processes: differential equations (DEs) solved by the model.
e.g., evolution of water surface height

2. Discrete updates: often arise from ad-hoc and empirical modeling.
e.g., a location becoming wet/dry

I DEs are discretized in time and space, yet they may taken to be continuous.
I to abstract away from numerical methods.
I to focus on discrete decisions and updates.

Altuntas and Baugh 6



Hybrid theorem proving for verifying numerical software

Altuntas and Baugh 7



Hybrid theorem proving for verifying numerical software

Altuntas and Baugh 7



Hybrid theorem proving for verifying numerical software

Make wet!

Altuntas and Baugh 7



Hybrid theorem proving for verifying numerical software

Altuntas and Baugh 7



Hybrid theorem proving for verifying numerical software

Make wet!

Altuntas and Baugh 7



Hybrid theorem proving for verifying numerical software

Altuntas and Baugh 7



Hybrid theorem proving for verifying numerical software

1-D shallow water equations:

η′ = −∂uh
∂x

, ... (1)

I In an actual numerical model, discretize both in time and space:

ηn+1
i − ηni

∆t
=

(
(uh)ni+1 − (uh)ni−1

)
/(∆x), ... (2)

I In a hybrid verification model, discretize in space only:

η′ =
(

(uh)i+1 − (uh)i−1
)
/(∆x), ... (3)

where η is water elevation, h is water height, u is velocity.

Altuntas and Baugh 7



Hybrid theorem proving for verifying numerical software

Abstract discrete grids:

I Small discrete grids for tractability.

I Non-determinism to represent external states.

Rationale: By the CFL condition, domain of dependence is limited.

Altuntas and Baugh 8



Hybrid theorem proving for verifying numerical software

Hybrid model of the 1-D wetting and drying:

initialConditions() → initial condition[
{ execution begins

{ η′ = (uhi+1 − uhi−1)/(∆x),..} continuous evolution

wettingDrying(); discrete assignment

}∗
]

loop or terminate

safetyCondition() postcondition

where η is water elevation, h is water height, u is velocity.

Altuntas and Baugh 9



Hybrid theorem proving for verifying numerical software

Key elements of the abstraction approach:

I View numerical software as a hybrid system.

I Model PDEs as continuous in time and discrete in space
(as in the method of lines).

I Incorporate discrete updates.

I Work with small, discrete grids.

Altuntas and Baugh 10



Test Case: The Keymaera X Model of the KPP scheme
Application of hybrid theorem proving in Earth System Modeling



Test Case: The Keymaera X Model of the KPP scheme

I A test case involving a large-scale numerical software:
I CESM: A leading climate model developed by NCAR.
I MOM6: The future ocean component of CESM.

I Main Project: Coupling of MOM6 in CESM
I The KPP scheme recently incorporated in MOM6.
I An unphysical behavior when KPP matching is turned on!

Altuntas and Baugh 11



Test Case: The Keymaera X Model of the KPP scheme

Earth System Models:

I HPC software that simulate Earth’s
climate.

I Components: atmosphere, ocean,
ice, land, etc.

I Differential equations that
model physical, chemical, and
biological processes.

I Millions of core-hours!

https://celebrating200years.noaa.gov/breakthroughs/climate model/

Altuntas and Baugh 12



Test Case: The Keymaera X Model of the KPP scheme

Global Ocean Models:

I The 3D primitive equations.

I Finite difference approximations.

I Subgrid-scale processes included as
parameterizations. Example:

I KPP scheme parameterizes
ocean mixing due to vertical
turbulent fluxes in the OBL.

Horizontal resolution of workhorse
ocean grids are ∼ 1◦ × 1◦

Briegleb et al. (2010, NCAR Tech. Note)

Altuntas and Baugh 13



Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme

I The continuous evolution of a scalar quantity λ over a vertical water column:

∂λ

∂t
=

∂

∂z
(w ′λ′ + w λ) (4)

I The unresolved turbulent flux parameterized as a diffusive process (Griffies et al., 2015):

w ′λ′ = −Kλ(
∂λ

∂z
+ γλ) (5)

I The diffusivity Kλ at depth d within the OBL (Large et al., 1994):

Kλ = h · wλ(σ) · Gλ(σ) (6)

I Shape function for the OBL diffusivities:

Gλ(σ) = a0 + a1σ + a2σ
2 + a3σ

3 (7)

Altuntas and Baugh 14



Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme

I Compute the ocean boundary layer (OBL) depth.
I Compute the diffusivities within ocean interior.
I Compute the OBL diffusivities (no matching).

Depth

surface

OBL base

bottom diffusivity (m2/s)

z

OBL diffusivities (no matching)

Interior diffusivities

Altuntas and Baugh 15



Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme

I Compute the ocean boundary layer (OBL) depth.
I Compute the diffusivities within ocean interior.
I Compute the OBL diffusivities (matching).

Depth

surface

OBL base

bottom diffusivity (m2/s)

z

Matched diffusivities

Altuntas and Baugh 16



Test Case: The Keymaera X Model of the KPP scheme

I Undesired behavior:
I Matching algorithm leads to negative diffusivities in OBL.

I Debugging:
I Via an interactive debugger.
I Took several days and thousands of CPU hours.

I Fix:
I Modify the matching algorithm for cases where the interior diffusivity

gradient is negative.

I Verification:
I A KeYmaera X model of the KPP scheme.

Altuntas and Baugh 17



Test Case: The Keymaera X Model of the KPP scheme

The hybrid model of the KPP scheme:

timestep

initialConditions() →[
{
compute OBL depth; // discrete updates

compute interior K;

compute OBL K;

{z ′cr = −zcr} // continuous system

}∗
]

K > 0

where K is diffusivity and zcr is the depth at which RiB is equal to Ricr .

Altuntas and Baugh 18



Test Case: The Keymaera X Model of the KPP scheme

The hybrid model of the KPP scheme:

instantaneous

over some ∆t

initialConditions() →[
{
compute OBL depth; // discrete updates

compute interior K;

compute OBL K;

{z ′cr = −zcr} // continuous system

}∗
]

K > 0

where K is diffusivity and zcr is the depth at which RiB is equal to Ricr .

Altuntas and Baugh 19



Test Case: The Keymaera X Model of the KPP scheme

Continuous evolution of zcr + discrete changes:

D

surface

zw

interface

bottom time

z

D − h

z ′cr = −zcr

t0

zw

t1 t2 t3

(a) (b)

Altuntas and Baugh 20



Test Case: The Keymaera X Model of the KPP scheme

The KeYmaera X proof process:

1. Develop the hybrid model of the KPP scheme

2. Reproduce the undesired behavior via a custom proof tactic:

I Conventional logical assertions and rules, e.g.,
I loop invariants

I as well as differential dynamic logic rules, e.g.,
I differential invariants

3. Apply the fix in the matching algorithm: match gradients only if
interiorgradients are non-negative.

4. Re-run the proof tactic and confirm that undesired behavior is eliminated.

Altuntas and Baugh 21



KeYmaera X UI:
Develop the hybrid model.

Altuntas and Baugh 22



KeYmaera X UI:
Construct a proof.

Altuntas and Baugh 23



KeYmaera X UI:
Steer the proof.

Altuntas and Baugh 24



KeYmaera X UI:
Generate counter-example
if formula is invalid.

Altuntas and Baugh 25



KeYmaera X UI:
Close the proof.

Altuntas and Baugh 26



Conclusions

I A lightweight formal methods application.

I Highly efficient compared to testing.

I Provides more confidence.
I Generality (due to nondeterminism)
I The coverage in the temporal dimension is much greater.

I Limitations:
I floating point arithmetic
I numerical issues

Altuntas and Baugh 27



Thanks
altuntas@ucar.edu, jwb@ncsu.edu


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	2.27: 
	2.28: 
	2.29: 
	2.30: 
	2.31: 
	2.32: 
	2.33: 
	2.34: 
	2.35: 
	2.36: 
	2.37: 
	2.38: 
	2.39: 
	2.40: 
	2.41: 
	2.42: 
	2.43: 
	2.44: 
	2.45: 
	2.46: 
	2.47: 
	2.48: 
	2.49: 
	2.50: 
	2.51: 
	2.52: 
	2.53: 
	2.54: 
	2.55: 
	2.56: 
	2.57: 
	2.58: 
	2.59: 
	2.60: 
	2.61: 
	anm2: 


