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Numerical Software Verification

» The accuracy of physical models depend on:
1. Convergence of numerical methods.

2. Correctness of realization in software:

» Complicated by intermittent discrete updates.

» This study presents:
» A lightweight verification approach for (2).
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Hybrid Theorem Proving
A formal verification technique for cyber-physical systems.



Hybrid Theorem Proving

» Cyber-physical systems are compositions of:

1. Real world physics
continuous evolution

2. Computer sampling (sensors) and intervention (actuators)
discrete changes

» Examples: self-driving cars, ATC, robots, etc.
» Verification tools: hybrid theorem provers, e.g., KeYmaera X

» Hybrid programs that model cyber-physical systems:

1. ODEs model real world physics.
2. Discrete programs model computer intervention.

Altuntas and Baugh



Hybrid Theorem Proving

Continuous Evolution + Intermittent Discrete Changes

» Continuous evolution:
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Discrete change:

v

V.= —V

L

t3 ta 65t

L=z s

Platzer, A. " Logical Foundations of Cyber-Physical Systems.” (2018)
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Hybrid Theorem Proving

A hybrid model:

(0 < x < Xmax) —

[

initial conditions
execution begins
continuous evolution
discrete assignment
loop or terminate

postcondition

where x is altitude, v is velocity, a is acceleration.
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Hybrid Theorem Proving

A hybrid model:

(0 < x < Xmax) —

[

over some At { {X'=v,v =—g}
instantaneous { vVi=—v,
}]
(0 < x < Xiax)

initial conditions
execution begins
continuous evolution
discrete assignment
loop or terminate

postcondition

where x is altitude, v is velocity, a is acceleration.
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Hybrid theorem proving for verifying numerical software
A lightweight formal methods approach



Hybrid theorem proving for verifying numerical software

» Based on viewing numerical models as a hybrid system.
1. Continuous processes: differential equations (DEs) solved by the model.
e.g., evolution of water surface height

2. Discrete updates: often arise from ad-hoc and empirical modeling.
e.g., a location becoming wet/dry

» DEs are discretized in time and space, yet they may taken to be continuous.

» to abstract away from numerical methods.
» to focus on discrete decisions and updates.
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Hybrid theorem proving for verifying numerical software

Water surface elevations
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Hybrid theorem proving for verifying numerical software

Water surface elevations
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Hybrid theorem proving for verifying numerical software
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Hybrid theorem proving for verifying numerical software
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Hybrid theorem proving for verifying numerical software

Water surface elevations
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Hybrid theorem proving for verifying numerical software
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Hybrid theorem proving for verifying numerical software

1-D shallow water equations:

y_ _Ouh
n = VR

» In an actual numerical model, discretize both in time and space:

L (T

» In a hybrid verification model, discretize in space only:

n = <(Uh)i+1 - (Uh)i—1> /(Ax), ...

where 7 is water elevation, h is water height, u is velocity.
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Hybrid theorem proving for verifying numerical software

Abstract discrete grids:

» Small discrete grids for tractability.
» Non-determinism to represent external states.

Rationale: By the CFL condition, domain of dependence is limited.
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Hybrid theorem proving for verifying numerical software

Hybrid model of the 1-D wetting and drying:

initial Conditions() — initial condition
[{ execution begins
{7 = (uhiy1 — uhi_1)/(Ax),..} continuous evolution
wettingDrying(); discrete assignment

3] loop or terminate
safetyCondition() postcondition

where 1) is water elevation, h is water height, u is velocity.
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Hybrid theorem proving for verifying numerical software

Key elements of the abstraction approach:

» View numerical software as a hybrid system.
» Model PDEs as continuous in time and discrete in space
(as in the method of lines).

» Incorporate discrete updates.
» Work with small, discrete grids.

Altuntas and Baugh
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Test Case: The Keymaera X Model of the KPP scheme
Application of hybrid theorem proving in Earth System Modeling



Test Case: The Keymaera X Model of the KPP scheme

» A test case involving a large-scale numerical software:

» CESM: A leading climate model developed by NCAR.
» MOMBG6: The future ocean component of CESM.

» Main Project: Coupling of MOM6 in CESM

» The KPP scheme recently incorporated in MOM6.
» An unphysical behavior when KPP matching is turned on!

Altuntas and Baugh
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Test Case: The Keymaera X Model of the KPP scheme

Earth System Models:

» HPC software that simulate Earth's
Vertical Grid
(Height or Pressure) |~

climate.

> Components: atmosphere, ocean,
ice, land, etc.

» Differential equations that
model physical, chemical, and
biological processes.

» Millions of core-hours!

https://celebrating200years.noaa.gov/breakthroughs/climate_model /
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Test Case: The Keymaera X Model of the KPP scheme

Global Ocean Models:
» The 3D primitive equations.
» Finite difference approximations.

» Subgrid-scale processes included as
parameterizations. Example:
» KPP scheme parameterizes
ocean mixing due to vertical
turbulent fluxes in the OBL.

Altuntas and Baugh

Horizontal resolution of workhorse
ocean grids are ~ 1° x 1°
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Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme

» The continuous evolution of a scalar quantity A\ over a vertical water column:

v

v

v
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o 0 ——

The unresolved turbulent flux parameterized as a diffusive process (Griffies et al., 2015):

— oX
WA= —Ka(52 + 1)

The diffusivity Ky at depth d within the OBL (Large et al., 1994):

KA =h- W,\(O') . GA(O')

Shape function for the OBL diffusivities:

G)\(O') = ap+ a10 + 220'2 =+ 330'3

(4)

(5)
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Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme
» Compute the ocean boundary layer (OBL) depth.
» Compute the diffusivities within ocean interior.
» Compute the OBL diffusivities (no matching).

Depth

Altuntas and Baugh
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Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme

» Compute the ocean boundary layer (OBL) depth.
» Compute the diffusivities within ocean interior.
» Compute the OBL diffusivities (matching).

z

surface /

—— OBL base 7

Depth Matched diffusivities

bottom diffusivity (m?/s)

Altuntas and Baugh
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Test Case: The Keymaera X Model of the KPP scheme

» Undesired behavior:
» Matching algorithm leads to negative diffusivities in OBL.
» Debugging:
» Via an interactive debugger.
» Took several days and thousands of CPU hours.
» Fix:
» Modify the matching algorithm for cases where the interior diffusivity
gradient is negative.

» Verification:
» A KeYmaera X model of the KPP scheme.

Altuntas and Baugh 17



Test Case: The Keymaera X Model of the KPP scheme

The hybrid model of the KPP scheme:

initialConditions() —
[
compute_OBL _depth, // discrete updates
compute_interior_K;
compute_OBL_K;
{z], = -z} // continuous system
3]

K>0

timestep

where K is diffusivity and z., is the depth at which Rig is equal to Ri,.

Altuntas and Baugh
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Test Case: The Keymaera X Model of the KPP scheme

The hybrid model of the KPP scheme:

initialConditions() —
[
compute_OBL _depth, // discrete updates
instantaneous compute_interior_K;
compute_OBL_K;
over some At { {z], = -z} // continuous system
3]

K>0

where K is diffusivity and z., is the depth at which Rig is equal to Ri,.

Altuntas and Baugh

19



Test Case: The Keymaera X Model of the KPP scheme

Continuous evolution of z., + discrete changes:

z
—— —— surface
—-— interface Zw D—h
- z! z
- cr
D Zu B cr
——  =+—— bottom time
to h t2 t3

Altuntas and Baugh
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Test Case: The Keymaera X Model of the KPP scheme

The KeYmaera X proof process:
1. Develop the hybrid model of the KPP scheme
2. Reproduce the undesired behavior via a custom proof tactic:

» Conventional logical assertions and rules, e.g.,
» loop invariants

» as well as differential dynamic logic rules, e.g.,
» differential invariants

3. Apply the fix in the matching algorithm: match gradients only if
interiorgradients are non-negative.

4. Re-run the proof tactic and confirm that undesired behavior is eliminated.

Altuntas and Baugh 21



KeYmaera X Ul:
Develop the hybrid model.
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® 0 ® [y kermaerax x 4+

<« C  ® 1270.0.1:8090/dashboard.htmi?#/models

kpp_matching_faulty

KK 7% UITTUSIVITY @t INTETTACE ¥/

/* shape function coefficients x/
R a2.
R a3.

R nu. /% interior diffusivity at sigma=1x/
R dnu. /% interior diffusivity gradiant at sigma=lx/
End.

Problem.
initialConditions() ->

[

* @0 a @

# Edit

1{
/% 1. DDAs: */
computeBLD;
computeNu;
computeK;

/% 2. Continuous system: %/

{zCr' = —zCr}
}x@invariant(K>0 & zw()>=zCr & zCr>0)
1(k-0)
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KeYmaera X Ul:
Construct a proof.
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® 0 ® [y kermaerax x 4+

<« C @ 1270.0.1:8090/dashboard.htmi?#/proofs/109

KeYmaera X

kpp_matching,

fautty: Proof 3

» Auto 10 Unfold # Prop-Auto ¥ Simplify D Step back # Edit

Propositional -~ Quantifiers - Hybrid Programs - Differential Equations ~  Closing ~  Inspect ~

M PR |

(D-zw)/h ;
1?nu>0;dnus=*; 2+3"nu/(h*w)+dnu/w ; a3 := 1-nu/ih*w)-dnu/w ; K
hw*(sigma-+a2°sigma~2+a3"sigma3) ; }{ 2Cr' = zCr&true }}*]1 K> 0

Proof Progra... Rerun | Fresh steps Execute: | Atomic | Step-by-Step

nil

KeYmaera X version 4.4.3 (version 4.6.1 is now available from KeYmaeraX.org). © Logical Systems Lab, Carnegie Mellon University 2017
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KeYmaera X Ul:
Steer the proof.
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® 0 ® [y kermaerax x 4+
<« C @ 1270.0.1:8090/dashboard.htmi?#/proofs/109 % © 0 @ o
KeYmaera X
» Auto T Unfold # Prop-Auto »* Simplify D Step back # Edit # Browse =
Propasitional ~ Quantifiers ~ Hybrid Programs ~ Differential Equations ~ Closing ~ Inspect ~
= D>0AD>zwazw>0A0<nuaK>0Aw>0azCr=2zw — [{{h:=D-zCr;
. sigma:= (D-zwyn ; alpha :=* ;7 0 <alpha  alpha < 1; 2Cr := alpha"zCr ; }{nu
=% 200> 0 dnu t=*; H{ a2 1= -2+3'nu/(h*w)+dnudw ; a3 1= 1-nuh*w)-dnudw ;
K = h"w(sigma+a2°sigma’2+a3'sigman3) ; } {zCr' = -2Cr &true }}* 1 K> 0
® -
x
Proof F =
Loop Induction 1loop - yep
roe K>08zv A
it K>08zw(>=z...  + fa] K>0daw()>=z.
K>08zw(>=z.. P
r r [P, A
[ steraten Hai¥1P o> Palalie} P
Godel/Vacuous o =
KeYmaeraXvel 14 poxd
Search Browse... = Apply Lemma
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KeYmaera X Ul:
Generate counter-example
if formula is invalid.

Altuntas and Baugh

L]
&«

® [ Kevmaerax x 4+

C @ 1270¢

Counter-example search result

@ Formula not valid, found a counter-example
LR TR V-I} s a2 11

11 w2 1 -8

Counter-example values

h 1
nu o1
zCr 1 172
w 1
zCr 0 1/4
dnu -8
w1
D 32
alpha 172
K 1

:8000/dashboard.htmi?#/proofs/103

1

(K>0Azw()22Cr_14zCr_1>0)AD (1>04D (>zw()azw(>0aw(>0ah=D (-zCr_1A(0 < alphasalpha < 1)zCr_O=alphazCr_1Anu>0—strue—(

1 a1 1 11
hw)*(D (-zwllh+(-2+3 nuhwO)+dnuAw() (D 0-zw)2+(1-nu/hwO)-dnuaw()(D (-zwOVh)3)>0c-false)

182 12 e iR LT R AR

TRBTPR(T)
QE

7 100p({ Y>0&ZwW()>=ZCT&ZCT>0 ¥, 1) 7
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KeYmaera X Ul:
Close the proof.
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® 0 ® [y kermaerax x 4+

<« C @ 1270.0.1:8090/dashboard. htmlI?#/proofs/97 ¥ ©® 0 a o

T ————

Proof Result

v All goals in your proof agenda have been closed.

Provable

> D()>06D()>2w()&zw()>088 < nuUEK>0&w()>8&2Cr=2w()->[{{h:=D()-2zC
risigma:=(D()-2w())/h;alpha: 0 < alphaSalpha < 1;zCr:=alpha*zCr; }Hnu:=+; ?nu=0;dnu:=+; H{?dnu <
0;a2:=-2+3%nu/(hsw()) ;a3:=1-nu/ (hxw() ) ;++2dnu>=0;a2:=-2+3*nu/ (haw() ) +dnu/w();a3:=1-nu/ (haw() ) -dnu/
w(); Mz =hsw()*(sigma+a2#sigma~2+ad+sigma~3) ; }{zCr'=-2Cr&t rue}}+1K>0 proved))

NoProofTermProvable(Provable(

Tactic to Reproduce the Proof

implyR(1) ; loop({ K>@&zw()>=2Cr&zCr>0"}, 1) ; <(

QE,

QE,

composeb(1) ; composeb(1) ; assignb(1) ; composeb(1) ; assignb(1) ; composeb(1) ; randomb(1) ; a
11R(1) ; composeb(1) ; testb(1) ; implyR(1) ; assignb(1) ; composeb(1) ; composeb(l) ; randomb(1)
; allR(1) ; composeb(1) ; testb(1) ; implyR(1) ; randomb(1) ; allR{(1) ; composeb(1) ; composeb(1)
; choiceb(1) ; composeb(1.8) ; testb(1.8) ; andR(1) ; <(

implyR(1) ; composeb(1) ; assignb(1) ; assignb(1) ; assignb(1) ; boxAnd(1) ; andR(1) ; <(
A1)+ trueTanlu(1) : OF.

Ke) @ Browse proof & Download tactic # Download lemma & Download archive
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Conclusions

» A lightweight formal methods application.
» Highly efficient compared to testing.
» Provides more confidence.

» Generality (due to nondeterminism)

» The coverage in the temporal dimension is much greater.
» Limitations:

» floating point arithmetic
» numerical issues

Altuntas and Baugh
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