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An application of lightweight formal methods

I A model checking approach for concurrent numerical models

I An abstraction guideline

I to verify concurrency

I to generate safe synchronization arrangements

I An example application:

I ADCIRC++, an adaptive ocean circulation model

I Promela (SPIN)
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Concurrency in Numerical Modeling

I Domain decomposition

I Data parallelism

I Coupled modeling

I to simulate multiple phenomena

I Multi-instance modeling

I to simulate varying configurations
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Concurrency in Numerical Modeling

I Domain decomposition
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I Coupled modeling

I to simulate multiple phenomena

I Multi-instance modeling

I to simulate varying configurations

potentially more asynchronous,

global reductions less common
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Storm Surge Modeling

I Applications:

I Forecasting, hindcasting

I Risk analysis

I Infrastructure design

I ADCIRC:

I An FE shallow water model.

I Used by USACE, FEMA, NOAA,
and others.

I ADCIRC++:

I A prototype based on ADCIRC to
experiment with ASM.

Hurricane Gustav (2008)
(Dietrich et al., 2011)
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Adaptive Subdomain Modeling

I A computational technique

I Multi-instance concurrency:

I Parent domain (provides BCs)

I Child domains

I alternative design scenarios

I adaptive spatial extents

I Performance and accuracy:

I Computational cost of each child:
∼2% of cost of full domains

I Surge height errors: < 1cm

Child Domain

Parent Domain
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Shinnecock Inlet Child Domain Patch

I The patch expands if:

I Altered hydrodynamics
propagate.

I The patch contracts if:

I Altered hydrodynamics
recede. . Time: 0%
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Shinnecock Inlet Child Domain Patch

I The patch expands if:
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Shinnecock Inlet Child Domain Patch

I The patch expands if:

I Altered hydrodynamics
propagate.

I The patch contracts if:

I Altered hydrodynamics
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Shinnecock Inlet Child Domain Patch

I The patch expands if:

I Altered hydrodynamics
propagate.

I The patch contracts if:

I Altered hydrodynamics
recede. . Time: 100%
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Adaptive Subdomain Modeling

Enforcing child domain interfaces

I how to synchronize
concurrent domains
sharing the same
memory space?
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Adaptive Subdomain Modeling

Correctness

I Challenge: multi-instance concurrency

I Race conditions on critical quantities 1

I Our solution:

I Phasing mechanism

I Our verification approach:

I lightweight model checking

1Quantities transferred from parent to children: surge height, velocities, wet/dry states, wind forcing
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Adaptive Subdomain Modeling

Phasing Mechanism:

1. Group the routines (that constitute
a timestep) into phases.

2. Regulate the progression of domains
during each timestep.

to prevent:

I parent from overwriting data.

I children from using stale data.
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Verifying Concurrency in Numerical Models

Model Checking Workflow
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Verifying Concurrency in Numerical Models

I Constituents to be abstracted

1. critical quantities

2. concurrent components/instances

3. synchronization mechanism
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Abstraction

1. critical quantities: (e.g., masses, velocities, fluxes)

I represent with integer variables (denoting the version, or timestamp).

I a single variable to represent the entire grid.

I model only two operations:

I write → increments variable to designate a new version

I copy → a placeholder for safety checks
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Abstraction

2. concurrent components/instances:

I represent each as a separate process.

I incorporate only the synchronization/communication properties.

3. synchronization mechanism:

I use synchronization constructs of the specification language of choice.
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Case Study: Verifying Concurrency in ADCIRC++

1. Critical Quantities

inline write(var){

if

:: isParent() -> var++;

:: else -> var--;

fi

}

inline copy(var){

if

:: isParent() -> skip;

:: else -> CHECK_SAFETY;

fi

}
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Case Study: Verifying Concurrency in ADCIRC++

2. Concurrent Domain Instances

I In a typical ASM run: 50-100 children

I In the abstract model: a single child

I data transfer is one-way from a parent to its children.

I children do not interfere.
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Case Study: Verifying Concurrency in ADCIRC++

3. Phasing Mechanism

I Let SPIN generate phasing arrangements non-deterministically.

I Call the timestepping routine infinitely many times.
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Case Study: Verifying Concurrency in ADCIRC++

I Verification

I The correctness depends on:

I criteria for entering a phase.

I arrangement of routines as phases.

I Thus, verification involves:

I confirming the correctness of criteria

I determining safe phasing arrangements
(that eliminate race conditions on the critical quantities)
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Case Study: Verifying Concurrency in ADCIRC++

I Verification

I Safety property: (checked at every copy operation)

#define CHECK_SAFETY safe=(var==0)

ltl notsafe {eventually !safe}

Interpretation: Child will eventually copy the wrong version of a quantity.
Counterexamples: Safe phasing arrangements

⇒ Looking for phasing arrangements that are never not safe.
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Conclusions

I Using SPIN, we found all race-free phasing arrangements in ASM.

I The approach requires only modest levels of human and computer effort:

I Promela code: 190 lines

I Initial model put together in less than a day.

I Future direction: Using the approach in the context of performance
optimization, e.g., optimizing concurrency in coupled climate models.
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