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Overview

I A lightweight verification approach numerical software
I Complementary to testing.
I Based on viewing numerical models as hybrid systems.
I Interplay of discrete updates and continuous processes.
I KPP scheme in MOM6+CESM

I “Modeling“ numerical software:
I formal methods: mathematically based techniques for the specification

and verification of software systems.
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Formal Methods in Scientific Computing

I Advantages over testing:
I Exhaustive and rigorous (albeit high level abstractions).
I Computationally efficient.
I Allows for incremental modeling.

I Uses in practice: (statement-level)
I Race conditions, deadlocks, floating-point operations
I Functional equivalence

I Higher-level use cases may be effective as well:
I Algorithm correctness
I Software design and abstraction

“Code is a poor medium for exploring abstractions.” (Jackson, 2006)
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Hybrid theorem proving for verifying numerical software
A lightweight formal methods approach



Hybrid Theorem Proving

I Cyber-physical systems are compositions of:

1. Continuous evolution — real world physics

2. Discrete behavior — computer sampling and intervention

I Examples: self-driving cars, ATC, robots, etc.
I Verification tools: hybrid theorem provers, e.g., KeYmaera X

I Hybrid programs that model cyber-physical systems:

1. ODEs model real world physics.

2. Discrete programs model computer intervention.
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Hybrid theorem proving for verifying numerical software

I Based on viewing numerical models as a hybrid system.

1. Continuous processes: differential equations (DEs) solved by the model.
e.g., evolution of water surface height

2. Discrete updates: often arise from ad-hoc and empirical modeling.
e.g., a location becoming wet/dry

I DEs are discretized in time and space, yet they may taken to be continuous.
I to abstract away from numerical methods.
I to focus on discrete decisions and updates.

I the oracle problem!
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Hybrid theorem proving for verifying numerical software

1-D shallow water equations:

η′ = −∂uh
∂x

, ... (1)

I In an actual numerical model, discretize both in time and space:

ηn+1
i − ηni

∆t
=

(
(uh)ni+1 − (uh)ni−1

)
/(∆x), ... (2)

I In a hybrid verification model, discretize in space only:

η′ =
(

(uh)i+1 − (uh)i−1
)
/(∆x), ... (3)

where η is water elevation, h is water height, u is velocity.
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Hybrid theorem proving for verifying numerical software

Abstract discrete grids:

I Small discrete grids for tractability.

I Non-determinism to represent external states.

Rationale: By the CFL condition, domain of dependence is limited.
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Hybrid theorem proving for verifying numerical software

Hybrid model of the 1-D wetting and drying:

over some ∆t

instantaneous

initialConditions() → initial condition[
{ execution begins

{ η′ = (uhi+1 − uhi−1)/(∆x),..} continuous evolution

wettingDrying(); discrete assignment

}∗
]

loop or terminate

safetyCondition() postcondition

where η is water elevation, h is water height, u is velocity.
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Test Case: The Keymaera X Model of the KPP scheme
Application of hybrid theorem proving in Earth System Modeling



Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme (Large et al., 1994)

I The continuous evolution of a scalar quantity λ over a vertical water column:

∂λ

∂t
=

∂

∂z
(w ′λ′ + w λ) (4)

I The unresolved turbulent flux parameterized as a diffusive process:

w ′λ′ = −Kλ(
∂λ

∂z
+ γλ) (5)

I The diffusivity Kλ at depth d within the OBL:

Kλ = h · wλ(σ) · Gλ(σ) (6)

I Shape function for the OBL diffusivities:

Gλ(σ) = a0 + a1σ + a2σ
2 + a3σ

3 (7)
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Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme

I Compute the ocean boundary layer (OBL) depth.
I Compute the diffusivities within ocean interior.
I Compute the OBL diffusivities (no matching).

Depth

surface

OBL base

bottom diffusivity (m2/s)

z

OBL diffusivities (no matching)

Interior diffusivities
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Test Case: The Keymaera X Model of the KPP scheme

The KPP scheme

I Compute the ocean boundary layer (OBL) depth.
I Compute the diffusivities within ocean interior.
I Compute the OBL diffusivities (matching).

Depth

surface

OBL base

bottom diffusivity (m2/s)

z

Matched diffusivities
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Test Case: The Keymaera X Model of the KPP scheme

I Undesired behavior:
I Turning on the matching algm leads to negative diffusivities.

I Debugging:
I To pinpoint the source of the issue: inconsistency between matching and

interpolation types

I Fix:
I Corrected the matching and interpolation types (for cases when diffusivity

gradient at OBL base is negative)

I Verification / A KeYmaera model of the KPP scheme
I to reproduce the undesired behavior.
I to confirm that no corner case is being missed.
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Test Case: The Keymaera X Model of the KPP scheme

The hybrid model of the KPP scheme:

timestep

initialConditions() →[
{

compute OBL depth(); // discrete updates

compute interior K();

compute OBL K();

{z ′cr = −zcr} // continuous system

}∗
]

K > 0

where K is diffusivity and zcr is the depth at which RiB is equal to Ricr .
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Test Case: The Keymaera X Model of the KPP scheme

The hybrid model of the KPP scheme:

instantaneous

over some ∆t

initialConditions() →[
{

compute OBL depth(); // discrete updates

compute interior K();

compute OBL K();

{z ′cr = −zcr} // continuous system

}∗
]

K > 0

where K is diffusivity and zcr is the depth at which RiB is equal to Ricr .
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Test Case: The Keymaera X Model of the KPP scheme

Continuous evolution of zcr + discrete changes:

D

surface

zw

interface

bottom time

z

D − h

z ′cr = −zcr

t0

zw

t1 t2 t3

(a) (b)
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Generating Proof Tactics

I Hilbert-style formal deduction: a finite sequence of formulas
(axioms and inferences)

φ→ [α]ψ Modal logic

Γ ` J,∆ J ` [α]J J ` P

Γ ` [α∗]P,∆

Predicate logic
(e.g. loop invariant)

Q ` [x ′ := f (x)](F )′

F ` [x ′ = f (x)&Q]F

Differential dynamic logic
(e.g. differential invariant)

The complete KeYmaera Model and the proof tactic:

https://github.com/alperaltuntas/keymaera-kpp
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Conclusions

I A lightweight formal methods application.

I Highly efficient compared to testing.

I Provides more confidence.
I Generality (due to nondeterminism)
I The coverage in the temporal dimension is much greater.

I Limitations:
I floating point arithmetic
I numerical issues

16



Thanks
altuntas@ucar.edu



Hybrid theorem proving for verifying numerical software
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Hybrid theorem proving for verifying numerical software
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Hybrid theorem proving for verifying numerical software

Make wet!
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Hybrid theorem proving for verifying numerical software
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Hybrid theorem proving for verifying numerical software

Make wet!
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Hybrid theorem proving for verifying numerical software

18



KeYmaera X UI:
Develop the hybrid model.
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KeYmaera X UI:
Construct a proof.
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KeYmaera X UI:
Steer the proof.
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KeYmaera X UI:
Generate counter-example
if formula is invalid.
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KeYmaera X UI:
Close the proof.
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