Research Report: Formal Methods and "Modeling" HPC software

Alper Altuntas

Thanks to Gustavo Marques and Bill Large

[1] Alper Altuntas, John Baugh. "Hybrid Theorem Proving as a Lightweight Method for Verifying Numerical Software", In Correctness 2018: Second International Workshop on Software Correctness for HPC Applications @ SC18

[2] Alper Altuntas, Ganesh Gopalakrishnan, Mike Lam, Markus Schordan. Panel on "Facilitating the Adoption of Correctness Tools in HPC Applications", In Correctness 2018 @ SC18

Overview

- A lightweight verification approach numerical software
 - Complementary to testing.
 - Based on viewing numerical models as hybrid systems.
 - Interplay of discrete updates and continuous processes.
 - ► KPP scheme in MOM6+CESM
- "Modeling" numerical software:
 - formal methods: mathematically based techniques for the specification and verification of software systems.

Formal Methods in Scientific Computing

- Advantages over testing:
 - Exhaustive and rigorous (albeit high level abstractions).
 - Computationally efficient.
 - Allows for *incremental* modeling.
- Uses in practice: (statement-level)
 - Race conditions, deadlocks, floating-point operations
 - Functional equivalence
- ► Higher-level use cases may be effective as well:
 - Algorithm correctness
 - Software design and abstraction

"Code is a poor medium for exploring abstractions." (Jackson, 2006)

Hybrid theorem proving for verifying numerical software A lightweight formal methods approach

Hybrid Theorem Proving

- Cyber-physical systems are compositions of:
 - 1. Continuous evolution real world physics
 - 2. Discrete behavior computer sampling and intervention
 - Examples: self-driving cars, ATC, robots, etc.
 - ▶ Verification tools: hybrid theorem provers, e.g., KeYmaera X
- Hybrid programs that model cyber-physical systems:
 - 1. ODEs model real world physics.
 - 2. Discrete programs model computer intervention.

- Based on viewing numerical models as a hybrid system.
 - 1. **Continuous processes:** differential equations (DEs) solved by the model. e.g., evolution of water surface height
 - 2. **Discrete updates:** often arise from ad-hoc and empirical modeling. e.g., a location becoming wet/dry
- ▶ DEs are discretized in time and space, yet they may taken to be continuous.
 - to abstract away from numerical methods.
 - ▶ to focus on discrete decisions and updates.
 - the oracle problem!

1-D shallow water equations:

$$\eta' = -\frac{\partial uh}{\partial x}, \dots \tag{1}$$

In an actual numerical model, discretize both in time and space:

$$\frac{\eta_i^{n+1} - \eta_i^n}{\Delta t} = \left((uh)_{i+1}^n - (uh)_{i-1}^n \right) / (\Delta x), \dots$$
 (2)

In a hybrid verification model, discretize in space only:

$$\eta' = \left((uh)_{i+1} - (uh)_{i-1} \right) / (\Delta x), \dots$$
 (3)

where η is water elevation, h is water height, u is velocity.

Abstract discrete grids:

- Small discrete grids for tractability.
- ▶ Non-determinism to represent external states.

Rationale: By the CFL condition, domain of dependence is limited.

Hybrid model of the 1-D wetting and drying:

where η is water elevation, h is water height, u is velocity.

Test Case: The Keymaera X Model of the KPP scheme Application of hybrid theorem proving in Earth System Modeling

The KPP scheme (Large et al., 1994)

• The continuous evolution of a scalar quantity λ over a vertical water column:

$$\frac{\partial \overline{\lambda}}{\partial t} = \frac{\partial}{\partial z} (\overline{w'\lambda'} + \overline{w}\,\overline{\lambda}) \tag{4}$$

The unresolved turbulent flux parameterized as a diffusive process:

$$\overline{w'\lambda'} = -K_{\lambda}(\frac{\partial\overline{\lambda}}{\partial z} + \gamma_{\lambda})$$
(5)

• The diffusivity K_{λ} at depth *d* within the OBL:

$$K_{\lambda} = h \cdot w_{\lambda}(\sigma) \cdot G_{\lambda}(\sigma)$$
(6)

Shape function for the OBL diffusivities:

$$G_{\lambda}(\sigma) = a_0 + a_1\sigma + a_2\sigma^2 + a_3\sigma^3$$
(7)

The KPP scheme

- Compute the ocean boundary layer (OBL) depth.
- Compute the diffusivities within ocean interior.
- Compute the OBL diffusivities (no matching).

The KPP scheme

- Compute the ocean boundary layer (OBL) depth.
- Compute the diffusivities within ocean interior.
- Compute the OBL diffusivities (matching).

Undesired behavior:

- Turning on the matching algm leads to negative diffusivities.
- Debugging:
 - To pinpoint the source of the issue: inconsistency between matching and interpolation types
- ► Fix:
 - Corrected the matching and interpolation types (for cases when diffusivity gradient at OBL base is negative)
- ► Verification / A KeYmaera model of the KPP scheme
 - to reproduce the undesired behavior.
 - ▶ to confirm that no corner case is being missed.

The hybrid model of the KPP scheme:

where K is diffusivity and z_{cr} is the depth at which Ri_B is equal to Ri_{cr} .

The hybrid model of the KPP scheme:

where K is diffusivity and z_{cr} is the depth at which Ri_B is equal to Ri_{cr} .

Continuous evolution of z_{cr} + discrete changes:

Generating Proof Tactics

 Hilbert-style formal deduction: a finite sequence of formulas (axioms and inferences)

 $\phi \rightarrow [\alpha] \psi$ Modal logic

$$\frac{\Gamma \vdash J, \Delta \quad J \vdash [\alpha]J \quad J \vdash P}{\Gamma \vdash [\alpha^*]P, \Delta}$$

Predicate logic (e.g. loop invariant)

$$\frac{Q \vdash [x' := f(x)](F)'}{F \vdash [x' = f(x)\&Q]F}$$

Differential dynamic logic (e.g. differential invariant)

The complete KeYmaera Model and the proof tactic: https://github.com/alperaltuntas/keymaera-kpp

Conclusions

- A lightweight formal methods application.
- Highly efficient compared to testing.
- Provides more confidence.
 - Generality (due to nondeterminism)
 - ▶ The coverage in the temporal dimension is much greater.
- Limitations:
 - floating point arithmetic
 - numerical issues

Thanks

altuntas@ucar.edu

KeYmaera X UI: Develop the hybrid model.

Ymaera X	Models Proofs							Therr	10 -	Help	*	0	
pp_match	ing_faulty											1	Ð
к к.	/* airrus	ivity at	intern	ace */									
/* shape fi	unction coeffi	cients *,	/										
R a2.													
R a3.													
R nu.	/* interi	or diffu:	sivity	at siama	a=1*/								
R dnu.	/* interio	r diffus:	ivity g	radiant	at sig	ma=1*/							
End.													
Problem.													
initialCon	ditions() ->												
{	DDAct +/												
compu.	teBLD:												
compu	teNu;												
compu:	teK;												
/* 2.	Continuous sv	stem: */											
{zCr'	= -zCr	acomi my											
}*@invar:	iant(K> <mark>0</mark> & zw()>=zCr &	zCr>0)				 						
](K>0)													
End													

KeYmaera X UI: Construct a proof.

🛡 🔍 🗋 KeYmaera X	× +			
← → C (i) 127.0.0.	.1:8090/dashboard.html?	#/proofs/109	☆	© () 🖸 🛛 🔕 ()
KeYmaera X Models	s Proofs		Theme -	Help 🗕 😧 🕩
kpp_matching_t	faulty: Proof 3			
► Auto 🕅 Unfold	d ⊮ Prop-Auto 🖋 S	implify 🖱 Step back 🖋 Edit 👫 Brows	e	=
Propositional -	Quantifiers - Hybrid F	rograms - Differential Equations - Clo	sing - Inspect -	
		📰 Goal: Q		
		$\vdash D > 0 \land D > zw \land zw > 0 \land 0 < nu \land K > 0$	$0 \land w \ge 0 \land zCr = zw \rightarrow [$	Hint: <u>MPLYR</u>
		sigma := (D-zw)/h ; alpha :=* ; ? 0 < alph	a < alpha < 1 ; zCr := alph	na*zCr ; } { nu :=*
		; ? nu > 0 ; dnu :=* ; } { a2 := -2+3*nu/(h* h*w*(sigma+a2*sigma^2+a3*sigma^3) ;	w)+dnu/w ; a3 := 1-nu/(h*) { zCr' = -zCr & true } }*]	w)-dnu/w ; K := K > 0
•				
Proof Progra	Rerun Fresh steps	None	Execute: Atom	nic Step-by-Step
nil				
KeYmaera X version 4.4.3 (version 4.6.1 is now avail	able from KeYmaeraX.org). © Logical Systems	Lab , Carnegie Mellon Ur	hiversity 2017

Steer the proof.

KeYmaera X UI:

Generate counter-example if formula is invalid.

Formula not	valid, found a count	ter-example				
1 1 1/2 (K>0∧zw0≥zCr_1/ 1 1 3/2 1 1 h*w0*((D 0-zw0))/h	1/2 3/2 3/2 zCr_1>0)∧D ()>0∧D ()> 1 1 1 -8 1 +(-2+3*nu/(h*w())+dnu/v	1 1 1 1 3/2 -zw()~zw()>0^w()>0^h=D 1 3/2 1 1 1 w())*((D ()-zw())/h)^2+(1-nu	2 1/2 1/2 1/2 0-zCr_1^(0 < alpha.alpha < 1 -8 1 3/2 1 1 u/(h*w())-dnu/w())*((D ()-zw())/h	1/4 1/2 1/2 1)∧zCr_0=alpha*zCi)^3)>0⇔false)	1 r_1∧nu>0—	+true→(
Counter-examp	le values					
	h 1					
	zCr_1 1/2					
	zw 1 zCr 0 1/4					
	dnu -8					
	w 1 D 3/2					
	alpha 1/2					
	K 1					

KeYmaera X UI:

Close the proof.

F	root Result	
✓ Pi	All goals in your proof agenda have been closed. rovable	
	<pre>doProofTermProvable(Provable(==> D()=0650)>zw()6zw()>666 < ruu5<065w()>66zCr=zw()-6((h=rb()-2C r;sigma:=(D()-zw())/h;alpha:=+;70 < alpha6alpha < 1;2Cr:=alpha=zCr;}(hu:==;7u=0;du:==;7u=0;du:==;}({?du:=0;2z:=-2+3=nu/(h=w())+du:/v();3:=1-nu/(h=w())-dnu/ a;z:=-2+3=nu/(h=w());a:=1-nu/(h=w());++?dnu:=0;2z:=-2+3=nu/(h=w())+dnu/v();3:=1-nu/(h=w())-dnu/ v();}K:=h=w()=(sigma+a2=sigma^2+a3=sigma^3);}zCr'=-zCr&true)+ K=0 proved))</pre>	