
This material is based upon work supported by the NSF National Center for Atmospheric Research, which is a major facility sponsored by the U.S. National Science Foundation under Cooperative Agreement No. 1852977.

visualCaseGen
Streamlining CESM Simpler Modeling Efforts and Beyond

June 11, 2024

Alper Altuntas – NCAR/CGD/OS
Isla Simpson, Scott Bachman, Samuel Levis, Brian Dobbins, Gokhan Danabasoglu

Project funded by an NSF CSSI Award (PIs: Bachman, Simpson)

Goals:

• Streamline CESM simpler modeling efforts and beyond.

• Enable hierarchical modeling: explore/combine different complexity levels.

In Practical Terms:

• Browse existing CESM configurations efficiently.

• Quickly generate new configurations (compsets and grids):

– Mix and match models and settings in a compatible manner.

– Create or modify grids as needed.

visualCaseGen

visualCaseGen

Part 1: A quick tour of visualCaseGen:

A GUI that guides the user through the process of creating experiments.

visualCaseGen

visualCaseGen

Part 2: A Glimpse Inside visualCaseGen Software

visualCaseGen Constraint Solver

How Does visualCaseGen Determine Compatibility?

• Constraint Specification: Defines relationships between config variables.

• Constraint Solver: Utilizes the Z3 library for logical reasoning.

visualCaseGen Constraint Solver

The Z3 Library

What it Does: Checks if a set of constraints can be satisfied. Finds solutions.

Strengths: Combines logical reasoning with knowledge about specific domains

(bools, ints, reals, strings, etc.). Manages complex relationships.

Development and Usage:

● Widely used in academia and industry. (~10k Citations, ~10k GitHub Stars)

● Developed by Microsoft Research. Open source and free (MIT license).

● Robust Python API. Available via pip.

visualCaseGen Constraint Solver

Relational Constraint Specification in visualCaseGen

visualCaseGen Constraint Solver

LND_DOM_PFT >= 0.0:

"PFT/CFT must be set to a nonnegative number"

visualCaseGen Constraint Solver

LND_DOM_PFT >= 0.0:

"PFT/CFT must be set to a nonnegative number"

visualCaseGen Constraint Solver

Or(COMP_OCN=="mom", OCN_GRID_MODE=="Standard"):

"Custom OCN grids can only be generated for MOM6."

visualCaseGen Constraint Solver

Or(COMP_OCN=="mom", OCN_GRID_MODE=="Standard"):

"Custom OCN grids can only be generated for MOM6."

visualCaseGen Constraint Solver

Or(COMP_OCN=="mom", OCN_GRID_MODE=="Standard"):

"Custom OCN grids can only be generated for MOM6."

visualCaseGen Constraint Solver

Implies(And(COMP_OCN=="mom", COMP_LND=="slnd", COMP_ICE=="sice"), OCN_LENY<180.0):

"If LND and ICE are stub, custom MOM6 grid must exclude poles (singularity).",

visualCaseGen Constraint Solver

The constraint specification syntax might seem unfamiliar at first.

visualCaseGen Constraint Solver

Python Z3 Constraints

Comparison ==, !=, >, <, >=, <= same

Arithmetic +, -, *, / same

Logical p and q

p or q

not p

not p or q

And(p, q)

Or(p, q)

Not(p)

Implies(p, q)

String a in b

a.startswith(b)

…

Contains(b, a)

PrefixOf(a,b)

…

visualCaseGen Constraint Solver

Python Z3 Constraints

Paradigm: Imperative Declarative

visualCaseGen Constraint Solver

Python Z3 Constraints

Paradigm: Imperative Declarative

Carbonnelle, Pierre, et al. "Interactive configurator with FO (.) and IDP-Z3." (2022).

A more natural and efficient fit

for constraint specification.

visualCaseGen Constraint Solver

The constraint specification syntax might seem unfamiliar at first, but

it enables the use of z3 as the core of the visualCaseGen constraint solver.

visualCaseGen Constraint Solver

Why use a solver?

Constraint satisfaction problem (CSP) is inherently complex (NP-complete).

● Hidden Conflicts: Individual constraints might be satisfied, but their

combinations can lead to conflicts.

● Dead-Ends: Solvers prevent scenarios where no feasible options remain

for configuration variables.

● Constraint Analysis: Are the constraints satisfiable? Any unreachable

options? Any constraint redundant?

● Scalability and Efficiency: As variables and constraints increase,

complexity grows exponentially. CSP solvers tackle this efficiently.

visualCaseGen Constraint Solver

Implies(COMP_WAV=="ww3", In(COMP_OCN, ["mom", "pop"])):

"WW3 can only be selected if either POP2 or MOM6 is the ocean component.",

Implies(COMP_ATM=="satm", COMP_OCN=="socn"):

"An active/data atmosphere is needed to force the ocean model."

visualCaseGen Constraint Solver

Implies(COMP_WAV=="ww3", In(COMP_OCN, ["mom", "pop"])):

"WW3 can only be selected if either POP2 or MOM6 is the ocean component.",

Implies(COMP_ATM=="satm", COMP_OCN=="socn"):

"An active/data atmosphere is needed to force the ocean model."

visualCaseGen Constraint Solver

Implies(COMP_LND=="clm", COMP_ROF!="drof") :

"CLM cannot be coupled with a data runoff model.",

Implies(COMP_LND=="slim", And(COMP_GLC=="sglc", COMP_ROF=="srof", COMP_WAV=="swav")) :

"GLC, ROF, and WAV cannot be coupled with SLIM.",

Implies(COMP_OCN=="mom", COMP_WAV!="dwav") :

"MOM6 cannot be coupled with data wave component.",

Implies(COMP_LND=="slnd", Or(COMP_OCN=="mom", COMP_GLC=="sglc")) :

"GLC cannot be coupled with a stub land model, unless it is coupled with MOM6.",

Implies(COMP_LND=="dlnd", COMP_ATM!="cam"):

"CAM-DLND coupling is not supported.",

visualCaseGen Constraint Solver

Implies(COMP_LND=="clm", COMP_ROF!="drof") :

"CLM cannot be coupled with a data runoff model.",

Implies(COMP_LND=="slim", And(COMP_GLC=="sglc", COMP_ROF=="srof", COMP_WAV=="swav")) :

"GLC, ROF, and WAV cannot be coupled with SLIM.",

Implies(COMP_OCN=="mom", COMP_WAV!="dwav") :

"MOM6 cannot be coupled with data wave component.",

Implies(COMP_LND=="slnd", Or(COMP_OCN=="mom", COMP_GLC=="sglc")) :

"GLC cannot be coupled with a stub land model, unless it is coupled with MOM6.",

Implies(COMP_LND=="dlnd", COMP_ATM!="cam"):

"CAM-DLND coupling is not supported.",

visualCaseGen Constraint Solver

The bottom line,

The interaction of constraints, even simple ones, can lead to hidden conflicts,

dead ends, and chain reactions. Robust constraint handling is vital.

The Stage Concept in visualCaseGen

and some key lessons in software design

The Stage Concept in visualCaseGen

Stage: A collection of config variables that can be configured simultaneously.

Frontend Representation:

The Stage Concept in visualCaseGen

Stage is a hierarchical concept.

• Based on the hierarchy, visualCaseGen generates a Stage tree and pipeline.

The Stage Concept in visualCaseGen

Stage Tree

The Stage Concept in visualCaseGen

Stage Pipeline

START

END

The Stage Concept in visualCaseGen

Stage Pipeline

END

START

The Stage Concept in visualCaseGen

Stage pipeline dictates variable precedence, such that:

- Variables in earlier stages have higher precedence.

- Variables within the same stage have equal precedence.

A complicating factor: The same variable can appear in multiple stages, as long as

they are not reachable along the same path.

The Stage Concept in visualCaseGen

The Stage Pipeline must form a directed acyclic graph (DAG). This ensures that:

• A consistent variable precedence can be established.

• No cycles are encountered by the user.

Stage Mechanism + Constraint Solver

Stage Mechanism + Constraint Solver

Constraint Graph: Formed by the specified constraints and variable precedence.

X Y

• For each variable X and Y occurring in the same constraint:

Precedence(X) ≥ Precedence(Y)

Precedence(X) ≤ Precedence(Y)

Constraint Graph

Constraint Graph

A user change initiates a traversal of the constraint graph:

• All potentially affected variables are visited: This involves calling Z3 to

check if the validity of options changed.

• The extent of the traversal depends on the user input, the stage hierarchy,

and constraints.

Constraint Graph

Constraint Graph

Constraint Graph

Constraint Graph

Conceptual Construct Matters.

Production ReadyFirst Prototype

Prototype vs Product

With the introduction of the Stage Concept:

• UX enhanced: Clearer guidance on user actions.

• Robustness increased: Clearer requirements and invariants such as variable

precedence, state change rules, and relational dependencies.

• Maintainability improved: LOC decreased significantly.

• Better performance: A more efficient constraint solver implementation tripled

the computational performance.

The Stage Concept in visualCaseGen

Software architecture is infrequently discussed or considered: Focus tends to

be on low-level details.

But high-level design constructs (i.e., functionalities, patterns, structures) have a

significant influence on overall software quality. We should make sure:

- All the conceptual constructs are identified, incorporated, and documented.

- The relationships between them are well-established and understood.

- Requirements are carefully analyzed and adhered to.

Takeaway

The hard part of building software is the conceptual construct,

not the labor of representing it.

– FP Brooks. “No Silver Bullet” (1987)

The hard part of building software is the conceptual construct,

not the labor of representing it.

– FP Brooks. “No Silver Bullet” (1987)

Agilistas prioritize code over design + requirements + specifications.

But in 10 years, those will be the only things we’ll write.

– Daniel Jackson, “What Makes Software Work?” (2024)

References

“Code is a poor medium for exploring abstractions.”

– D. Jackson. Software Abstractions. (2012)

“What matters is the fundamental structure of the design. If you get

it wrong, there is no amount of bug fixing and refactoring that will

produce a reliable, maintainable, and usable system.”

– D. Jackson. The essence of software. (2021)

“Writing is nature’s way of letting you know how sloppy your thinking is.”

– L. Lamport. Specifying Systems. (2002)

“Be on the lookout for opportunities to improve the design and plan on

spending some fraction of your time on design improvements.”

– J. Ousterhout. A Philosophy of Software Design. (2018)

A stable beta version released and available at:
https://github.com/ESMCI/visualCaseGen

Official release this winter.

Thanks!

altuntas@ucar.edu

https://github.com/ESMCI/visualCaseGen

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: visualCaseGen Constraint Solver
	Slide 7: visualCaseGen Constraint Solver
	Slide 8: visualCaseGen Constraint Solver
	Slide 9: visualCaseGen Constraint Solver
	Slide 10: visualCaseGen Constraint Solver
	Slide 11: visualCaseGen Constraint Solver
	Slide 12: visualCaseGen Constraint Solver
	Slide 13: visualCaseGen Constraint Solver
	Slide 14: visualCaseGen Constraint Solver
	Slide 15: visualCaseGen Constraint Solver
	Slide 16: visualCaseGen Constraint Solver
	Slide 17: visualCaseGen Constraint Solver
	Slide 18: visualCaseGen Constraint Solver
	Slide 19: visualCaseGen Constraint Solver
	Slide 20: visualCaseGen Constraint Solver
	Slide 21: visualCaseGen Constraint Solver
	Slide 22: visualCaseGen Constraint Solver
	Slide 23: visualCaseGen Constraint Solver
	Slide 24: visualCaseGen Constraint Solver
	Slide 25: visualCaseGen Constraint Solver
	Slide 26
	Slide 27: The Stage Concept in visualCaseGen
	Slide 28: The Stage Concept in visualCaseGen
	Slide 29: The Stage Concept in visualCaseGen
	Slide 30: The Stage Concept in visualCaseGen
	Slide 31: The Stage Concept in visualCaseGen
	Slide 32: The Stage Concept in visualCaseGen
	Slide 33: The Stage Concept in visualCaseGen
	Slide 34
	Slide 35: Stage Mechanism + Constraint Solver
	Slide 36: Constraint Graph
	Slide 37: Constraint Graph
	Slide 38: Constraint Graph
	Slide 39: Constraint Graph
	Slide 40: Constraint Graph
	Slide 41: Constraint Graph
	Slide 42
	Slide 43: Prototype vs Product
	Slide 44: The Stage Concept in visualCaseGen
	Slide 45: Takeaway
	Slide 46
	Slide 47
	Slide 48: References
	Slide 49

