
Rigor and Reasoning in Research Software (R3Sw)

Nov 5-7, 2025

Alper Altuntas

NSF National Center for Atmospheric Research (NCAR)

Abstraction, Decomposition & Specification

This work was supported by the Better Scientific Software Fellowship Program, a collaborative effort of the U.S. Department of Energy (DOE), Office of Advanced Scientific Computing Research via ANL
under Contract DE-AC02-06CH11357 and the National Nuclear Security Administration Advanced Simulation and Computing Program via LLNL under Contract DE-AC52-07NA27344; and by the National

Science Foundation (NSF) via SHI under Grant No. 2435328.

“Computational science now constitutes the third pillar of scientific inquiry.”
(Presidential Information Technology Advisory Committee Report, 2005)

Why this matters?

The Goal

• Explore how to make scientific software more reliable,
understandable, and robust.

• We’ll aim to do so without losing the creativity and speed that
make research exciting.

The code-and-fix style

• write code quickly to get results,
• fix issues as they appear,
• and hope it holds together.

The result? Code that works… most of the time.
But is fragile, hard to test, and tricky to extend.

The code-and-fix style

• A theory is scientific if it’s refutable.
• Similarly, a software can be scientific, if its testable / verifiable.
• So, we’ll go over practical techniques to:

• hypothesize: specify intent
• refute: test / verification
• refine code & understanding

A scientific mindset

Robert C. Martin
Agile Manifesto, SOLID principles

“Provable” here doesn’t refer to a mathematical proof,
but to scientific reasoning: something that can be falsified
through experiments, or testing.

Decomposition

• Based on abstractions, i.e., the key structures, relations, features, etc.
• Decompose the code, into modules, classes, methods, functions, …
• Such that each part

• has an isolated, clear purpose.
• exposes well-defined interfaces.
• is refutable, i.e., testable.

• One we can’t capture fully in a one-day tutorial, or in a few slides.
• Here, we focus on a few key principles for decomposing a large, monolithic

routine into smaller functions that facilitate testing and reasoning:
• Single purpose: each procedure should do one thing and do it clearly.
• General: avoid hard-coded values or hidden assumptions
• Explicit, narrow interfaces: small, coherent APIs that express intent
• Dependency injection: pass in policies or strategies, don’t grab globals.

Decomposition is the central software design task. (J. Ousterhout)

Specification
Once we have modular pieces, we need to say what each one should do:
• A specification is a precise, refutable statement that defines:

• What properties, conditions, and constraints are expected to hold.
• What behaviors and outputs should result from given inputs.

• Levels of specification:
• System-level.
• Module/class/function level.

{P} {Q} {P} {Q}

{P} {Q}

{P} {Q}

What to specify?
• Assumptions: background facts we take as given (e.g., valid b.c.)
• Contracts: function preconditions and postconditions.
• Properties: logical, computational, or physical/scientific.

What to specify?
• Assumptions: background facts we take as given (e.g., valid b.c.)
• Contracts: function preconditions and postconditions.
• Properties: logical, computational, or physical/scientific.

Contract
Specification

How to specify?

In this tutorial, our main focus is function-level specification. As such,
we use a lightweight, practical style of specification that combines:
• Type annotations
• Assertions

Both pytest and hypothesis libraries rely on assertions.

Why specify?

• Testing: Reasoning artifacts (e.g., assertions) ease testing efforts.
• Change: To safely evolve or replace implementations.
• Reasoning and Understanding: To think rigorously about intent.
 “Writing is Nature's way of showing you how sloppy your thinking is.” (Dick Guindon)

Implementation

With abstractions identified, pieces decomposed, and specifications written:
• implement code that satisfies them.

This shifts our mindset:
• Instead of starting with lines of code and hoping they work, we start with

clear expectations and then fill in implementations that must meet them.

{P} {Q} {P} {Q}{P} {Q} {P} {Q}

{P} {Q}

{P} {Q}

{P} {Q}

{P} {Q}

Testing & verification (i.e., refutation)

This is the final step. The majority of this tutorial is devoted to practical testing
and verification techniques. We’ll cover:

• Unit testing: for this input, expect this output
• Property-based testing: for all inputs satisfying preconditions, expect this relation to hold
• Bounded Formal Verification: prove that properties hold for all possible inputs
• Functional ”off-offline” testing: real-world applications

{P} {Q} {P} {Q}

{P} {Q}

{P} {Q}

In summary

Abstraction &
Decomposition

In summary

Abstraction &
Decomposition Specification

In summary

Abstraction &
Decomposition Specification Implementation

In summary

Abstraction &
Decomposition Specification Testing &

Verification
Implementation

Abstraction &
Decomposition Specification Testing &

Verification

“The initial design for a system or component is almost never the best one;
experience inevitably shows better ways to do things.” (J. Ousterhout, 2022)

Waterfall?

Implementation

Abstraction &
Decomposition Specification Testing &

Verification

Waterfall
Incremental

Implementation

Waterfall
Incremental

To enable incremental design & development:
• Tight feedback loops: Later work (impl/tests) can challenge and refine earlier choices.
• Move in small slices: specify just enough, implement a bit, test and revise.

How this works:
• Clear abstractions → easy to change parts without ripple.
• Clear, stable interfaces → refactor internals freely.
• Specs/contracts → instant oracles
• Fast unit/property tests → quick checks

A running example

A running example: The 1-D Heat equation

A running example: The 1-D Heat equation

A quick implementation

Quite straightforward and manageable, but
allows us to observe and generalize some
issues regarding testing/reasoning:

• Unclear abstractions: data structures and
relations not explicit.

• No reasoning artifacts: no assertions,
property specifications, or contracts.

• Mixed concerns: one function handling
multiple responsibilities.

• Opaque state: hard to inspect intermediate
results.

• No reuse or substitution: computations
tightly coupled.

A quick implementation

For only ~10 lines of code, these issues may not seem significant.

Our aim is to discuss strategies and techniques generalizable to real applications:
• The same patterns/issues appear in routines with 100s of lines.
• There, these design flaws become real barriers to understanding and testing.

Monolithic Code - Observations

Design for Reasoning

What we want:
• separation of concerns

• explicit expectations
• A structure we can

understand, test, extend

What we had:
• monolithic
• mixed concerns
• hard to test or extend
• lack explicit reasoning

Abstraction – Deciding What Matters

Concepts in Heat Equation Solver:
• Mesh → domain geometry. A collection of cells.
• Cell fields → quantities stored at cell centers (or cell avg.d)
• Face fields → quantities incident on cell interfaces
• Computations

Goal: Identify the key concepts that define the system.
• Focus on what we represent, not how we compute it.

Abstraction – Deciding What Matters

Abstraction – Deciding What Matters

Note that our approach is
mainly based on procedural
abstraction. We won’t rely
much on OOP features beyond
this simple data class.

Decomposition – Organizing the code

Goal: Split computation along abstractions.
• Each procedure should have a single, clear purpose.
• Procedures should be general. Avoid hard-coded assumptions.
• Keep them simple but composable.

Decomposition – The core API

Decomposition – The core API

Argument naming convention:
• c: cell field
• f: face field
• _out suffix: output argument
• _inout suffix: input/output argument

These general argument names make the
procedures reusable (in line with
abstraction by parameterization.)

Program to an interface, not an implementation
- Gamma et al. Design Patterns, 1995

Design each function around what it promises to do, not how it does it.
By depending only on clear, minimal interfaces (inputs, outputs, and contracts)
other parts of the code remain unaffected when internals change.

Specification
In addition to type annotations in core API, we can specify contracts:

{P} {Q} {P} {Q}{P} {Q} {P} {Q}

{P} {Q}

{P} {Q}

{P} {Q}

{P} {Q}

Specification
Beyond contracts and structural correctness, we can express:

• logical, computational, or physical/scientific properties

For the heat equation solver, examples include:
• Telescoping: sum of divergences equals boundary flux difference
• Conservation: total heat remains constant
• Symmetry: symmetric initial conditions stay symmetric
• Monotonicity: No new extrema

The sum of the divergence over all cells equals the net flux through the boundaries.

Specifying the Telescoping Property

The sum of the divergence over all cells equals the net flux through the boundaries.

Specifying the Telescoping Property

Isolation of concerns and having well defined APIs
facilitate specification and testing of such properties:

Implementation

{P} {Q} {P} {Q}

{P} {Q}

{P} {Q}

With abstractions identified, pieces decomposed, and specifications written:
• implement code that satisfies them.

Implementation

Implementation

Implementation

Testing

{P} {Q} {P} {Q}{P} {Q} {P} {Q}

{P} {Q}

{P} {Q}

{P} {Q}

{P} {Q}

In the remainder of this tutorial, we’ll cover several testing and verification
techniques in detail with and with hands-on exercises:

• Unit Testing
• Property-base testing
• Bounded formal verification
• Functional Testing

Unit Testing

Manish Venumuddula
(NSF NCAR)

Unit Testing

• Unit tests are practical and useful.
• They are great for quick, focused feedback.
• But they only test the examples we think to write.

Unit Testing

• For all inputs satisfying preconditions, check specified
relations/properties.

• Auto-generate many random inputs: explore cases we
might never think to test.

• The randomness is smart:
• guided by strategies and constraints.
• target edge cases.
• shrink counterexamples.

Property-Based Testing

Deepak Cherian
(Earthmover)

Property-Based Testing

• Apply this mindset to a Python version of a production code that
simulates wildfire behavior (translated from Fortran).

• Explore scientific representations:
• using synthetic fuels and comparing to observational data.

Functional Testing

Adrianna Foster
(NSF NCAR)

“Functional testing”

“Testing can be used to show the presence of bugs,
but never to show their absence.”

- Edsger W. Dijkstra

• Symbolically check whether properties hold for all possible inputs within specified ranges.
• Less practical, but still achievable when we have the right abstractions and decompositions.

Bounded Formal Verification

By reasoning symbolically:
• we move from testing some cases to proving properties for all cases within a defined scope.

This gives scope completeness:
• The solver explores every combination of inputs allowed by the specification.

And thanks to the small scope hypothesis:
• A high proportion of bugs can be found by checking the program for all inputs within some

small scope. (D. Jackson, 2006)

Bounded Formal Verification

We’ll introduce the Z3 Solver, a popular formal methods tool used across many domains.

• Bug finding & verification: powers symbolic execution and static-analysis tools
• Constraint solving: finds configurations or schedules that satisfy complex interdependent rules
• Compilers & optimizers: LLVM-based tools to check that optimized code.
• Tool development:

• We’ve used Z3 in visualCaseGen, a custom CESM case configurator: Z3 validates setting in
real time by analyzing dependencies, detecting conflicts, and explaining incompatibilities.

The Z3 Solver

Tomorrow’s Keynote: “Lean into Verifiable Intelligence”
• A talk about Lean, another formal verification tool, and how AI

and formal reasoning are coming together to make systems
both smarter and more trustworthy.

Formal Reasoning and AI

Soonho Kong
(Amazon)

Final Words

Coverage and Problem Sizes

Coverage and Problem Sizes

Coverage and Problem Sizes

No One-Size-Fits-All Solution

Each technique brings its own tradeoffs in effort, scope, and assurance.

• Unit testing: fast, focused, and essential
• Property-based testing: broad and exploratory
• Formal Verification: deep and exhaustive, but less practical

Choose based on your project’s needs and practical constraints.

Beyond Tools: A Scientific Mindset

• Start by thinking about the abstractions and properties your code should hold.
• Hypothesize about these properties through reasoning and specification.
• Attempt to refute your hypothesis through tests / verification.
• Incrementally refine your code and your understanding based on the results.

Does the extra work slow us down?

• Yes, for one-off applications.
• But for code that lives beyond a few versions, the effort pays back:

• It enables quick inquiries, changes, and exploration of new ideas.

Thanks!

altuntas@ucar.edu
Link to survey:

https://www.surveymonkey.com/r/RFQYLG6

	Slide 1
	Slide 2: Why this matters?
	Slide 3: The Goal
	Slide 4: The code-and-fix style
	Slide 5: A scientific mindset
	Slide 6
	Slide 7: Decomposition
	Slide 8: Decomposition is the central software design task. (J. Ousterhout)
	Slide 9: Specification
	Slide 10: What to specify?
	Slide 11: What to specify?
	Slide 12: How to specify?
	Slide 13: Why specify?
	Slide 14: Implementation
	Slide 15: Testing & verification (i.e., refutation)
	Slide 16: In summary
	Slide 17: In summary
	Slide 18: In summary
	Slide 19: In summary
	Slide 20: Waterfall?
	Slide 21: Waterfall Incremental
	Slide 22: Waterfall Incremental
	Slide 23: A running example
	Slide 24: A running example: The 1-D Heat equation
	Slide 25: A running example: The 1-D Heat equation
	Slide 26: A quick implementation
	Slide 27: A quick implementation
	Slide 28: Monolithic Code - Observations
	Slide 29: Design for Reasoning
	Slide 30: Abstraction – Deciding What Matters
	Slide 31: Abstraction – Deciding What Matters
	Slide 32: Abstraction – Deciding What Matters
	Slide 33: Decomposition – Organizing the code
	Slide 34: Decomposition – The core API
	Slide 35: Decomposition – The core API
	Slide 36: Program to an interface, not an implementation
	Slide 37: Specification
	Slide 38: Specification
	Slide 39: Specifying the Telescoping Property
	Slide 40: Specifying the Telescoping Property
	Slide 41: Implementation
	Slide 42: Implementation
	Slide 43: Implementation
	Slide 44: Implementation
	Slide 45: Testing
	Slide 46: Unit Testing
	Slide 47: Unit Testing
	Slide 48: Unit Testing
	Slide 49: Property-Based Testing
	Slide 50: Property-Based Testing
	Slide 51: Functional Testing
	Slide 52
	Slide 53: Bounded Formal Verification
	Slide 54: Bounded Formal Verification
	Slide 55: The Z3 Solver
	Slide 56: Formal Reasoning and AI
	Slide 57: Final Words
	Slide 58: Coverage and Problem Sizes
	Slide 59: Coverage and Problem Sizes
	Slide 60: Coverage and Problem Sizes
	Slide 61: No One-Size-Fits-All Solution
	Slide 62: Beyond Tools: A Scientific Mindset
	Slide 63: Does the extra work slow us down?
	Slide 64: Thanks! altuntas@ucar.edu

