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“Computational science now constitutes the third pillar of scientific inquiry.” 
(Presidential Information Technology Advisory Committee Report, 2005)

Why this matters?



The Goal

• Explore how to make scientific software more reliable, 
understandable, and robust.

• We’ll aim to do so without losing the creativity and speed that 
make research exciting.



The code-and-fix style

• write code quickly to get results,
• fix issues as they appear,
• and hope it holds together.

The result? Code that works… most of the time.
But is fragile, hard to test, and tricky to extend.

The code-and-fix style



• A theory is scientific if it’s refutable.
• Similarly, a software can be scientific, if its testable / verifiable.
• So, we’ll go over practical techniques to:

• hypothesize: specify intent
• refute: test / verification
• refine code & understanding

A scientific mindset



Robert C. Martin
Agile Manifesto, SOLID principles

“Provable” here doesn’t refer to a mathematical proof,
but to scientific reasoning: something that can be falsified 
through experiments, or testing.



Decomposition

• Based on abstractions, i.e., the key structures, relations, features, etc.
• Decompose the code, into modules, classes, methods, functions, …
• Such that each part

• has an isolated, clear purpose.
• exposes well-defined interfaces.
• is refutable, i.e., testable.



• One we can’t capture fully in a one-day tutorial, or in a few slides.
• Here, we focus on a few key principles for decomposing a large, monolithic 

routine into smaller functions that facilitate testing and reasoning:
• Single purpose: each procedure should do one thing and do it clearly.
• General: avoid hard-coded values or hidden assumptions
• Explicit, narrow interfaces: small, coherent APIs that express intent
• Dependency injection: pass in policies or strategies, don’t grab globals.

Decomposition is the central software design task. (J. Ousterhout)



Specification
Once we have modular pieces, we need to say what each one should do:
• A specification is a precise, refutable statement that defines:

• What properties, conditions, and constraints are expected to hold.
• What behaviors and outputs should result from given inputs.

• Levels of specification:
• System-level. 
• Module/class/function level. 

{P}      {Q} {P}      {Q}

{P}          {Q}

{P}        {Q}



What to specify?
• Assumptions: background facts we take as given (e.g., valid b.c.)
• Contracts: function preconditions and postconditions.
• Properties: logical, computational, or physical/scientific.



What to specify?
• Assumptions: background facts we take as given (e.g., valid b.c.)
• Contracts: function preconditions and postconditions.
• Properties: logical, computational, or physical/scientific.

Contract
Specification



How to specify?

In this tutorial, our main focus is function-level specification. As such, 
we use a lightweight, practical style of specification that combines:
• Type annotations
• Assertions

Both pytest and hypothesis libraries rely on assertions.



Why specify?

• Testing: Reasoning artifacts (e.g., assertions) ease testing efforts.
• Change: To safely evolve or replace implementations.
• Reasoning and Understanding: To think rigorously about intent.
        “Writing is Nature's way of showing you how sloppy your thinking is.” (Dick Guindon)



Implementation

With abstractions identified, pieces decomposed, and specifications written:
• implement code that satisfies them.

This shifts our mindset: 
• Instead of starting with lines of code and hoping they work, we start with 

clear expectations and then fill in implementations that must meet them.

{P}       {Q} {P}       {Q}{P}       {Q} {P}       {Q}

{P}         {Q}

{P}        {Q}

{P}         {Q}

{P}        {Q}



Testing & verification (i.e., refutation)

This is the final step. The majority of this tutorial is devoted to practical testing 
and verification techniques. We’ll cover:

• Unit testing: for this input, expect this output
• Property-based testing: for all inputs satisfying preconditions, expect this relation to hold
• Bounded Formal Verification: prove that properties hold for all possible inputs
• Functional ”off-offline” testing: real-world applications

{P}       {Q} {P}       {Q}

{P}         {Q}

{P}        {Q}



In summary
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Abstraction & 
Decomposition Specification Testing &

Verification

“The initial design for a system or component is almost never the best one; 
experience inevitably shows better ways to do things.” (J. Ousterhout, 2022)

Waterfall?

Implementation
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Waterfall 
Incremental

To enable incremental design & development:
• Tight feedback loops: Later work (impl/tests) can challenge and refine earlier choices.
• Move in small slices: specify just enough, implement a bit, test and revise.

How this works:
• Clear abstractions → easy to change parts without ripple.
• Clear, stable interfaces → refactor internals freely.
• Specs/contracts → instant oracles
• Fast unit/property tests → quick checks



A running example



A running example: The 1-D Heat equation



A running example: The 1-D Heat equation



A quick implementation



Quite straightforward and manageable, but 
allows us to observe and generalize some 
issues regarding testing/reasoning:

• Unclear abstractions: data structures and 
relations not explicit.

• No reasoning artifacts: no assertions, 
property specifications, or contracts.

• Mixed concerns: one function handling 
multiple responsibilities.

• Opaque state: hard to inspect intermediate 
results.

• No reuse or substitution: computations 
tightly coupled.

A quick implementation



For only ~10 lines of code, these issues may not seem significant.

Our aim is to discuss strategies and techniques generalizable to real applications:
• The same patterns/issues appear in routines with 100s of lines.
• There, these design flaws become real barriers to understanding and testing.

Monolithic Code - Observations



Design for Reasoning

What we want:
• separation of concerns

• explicit expectations
• A structure we can 

understand, test, extend

What we had:
• monolithic
• mixed concerns
• hard to test or extend
• lack explicit reasoning



Abstraction – Deciding What Matters

Concepts in Heat Equation Solver:
• Mesh → domain geometry. A collection of cells.
• Cell fields → quantities stored at cell centers (or cell avg.d)
• Face fields → quantities incident on cell interfaces
• Computations

Goal: Identify the key concepts that define the system.
• Focus on what we represent, not how we compute it.



Abstraction – Deciding What Matters



Abstraction – Deciding What Matters

Note that our approach is 
mainly based on procedural 
abstraction. We won’t rely 
much on OOP features beyond 
this simple data class.



Decomposition – Organizing the code

Goal: Split computation along abstractions.
• Each procedure should have a single, clear purpose.
• Procedures should be general. Avoid hard-coded assumptions.
• Keep them simple but composable.



Decomposition – The core API



Decomposition – The core API

Argument naming convention:
• c: cell field
• f: face field
• _out suffix: output argument
• _inout suffix: input/output argument

These general argument names make the
procedures reusable (in line with
abstraction by parameterization.)



Program to an interface, not an implementation
- Gamma et al. Design Patterns, 1995

Design each function around what it promises to do, not how it does it.
By depending only on clear, minimal interfaces (inputs, outputs, and contracts) 
other parts of the code remain unaffected when internals change.



Specification
In addition to type annotations in core API, we can specify contracts: 

{P}       {Q} {P}       {Q}{P}       {Q} {P}       {Q}

{P}         {Q}

{P}        {Q}

{P}         {Q}

{P}        {Q}



Specification
Beyond contracts and structural correctness, we can express: 

• logical, computational, or physical/scientific properties

For the heat equation solver, examples include:
• Telescoping: sum of divergences equals boundary flux difference
• Conservation: total heat remains constant
• Symmetry: symmetric initial conditions stay symmetric
• Monotonicity: No new extrema



The sum of the divergence over all cells equals the net flux through the boundaries.

Specifying the Telescoping Property



The sum of the divergence over all cells equals the net flux through the boundaries.

Specifying the Telescoping Property

Isolation of concerns and having well defined APIs
facilitate specification and testing of such properties:



Implementation

{P}       {Q} {P}       {Q}

{P}         {Q}

{P}        {Q}

With abstractions identified, pieces decomposed, and specifications written:
• implement code that satisfies them.



Implementation



Implementation



Implementation



Testing

{P}       {Q} {P}       {Q}{P}       {Q} {P}       {Q}

{P}         {Q}

{P}        {Q}

{P}         {Q}

{P}        {Q}

In the remainder of this tutorial, we’ll cover several testing and verification 
techniques in detail with and with hands-on exercises:

• Unit Testing
• Property-base testing
• Bounded formal verification
• Functional Testing



Unit Testing

Manish Venumuddula
(NSF NCAR)



Unit Testing



• Unit tests are practical and useful.
• They are great for quick, focused feedback.
• But they only test the examples we think to write.

Unit Testing



• For all inputs satisfying preconditions, check specified 
relations/properties.

• Auto-generate many random inputs: explore cases we 
might never think to test.

• The randomness is smart: 
• guided by strategies and constraints.
• target edge cases.
• shrink counterexamples.

Property-Based Testing

Deepak Cherian
(Earthmover)



Property-Based Testing



• Apply this mindset to a Python version of a production code that 
simulates wildfire behavior (translated from Fortran).

• Explore scientific representations:
• using synthetic fuels and comparing to observational data.

Functional Testing

Adrianna Foster
(NSF NCAR)

“Functional testing”



“Testing can be used to show the presence of bugs, 
but never to show their absence.”

-  Edsger W. Dijkstra



• Symbolically check whether properties hold for all possible inputs within specified ranges.
• Less practical, but still achievable when we have the right abstractions and decompositions.

Bounded Formal Verification



By reasoning symbolically:
• we move from testing some cases to proving properties for all cases within a defined scope.

This gives scope completeness:
• The solver explores every combination of inputs allowed by the specification.

And thanks to the small scope hypothesis:
• A high proportion of bugs can be found by checking the program for all inputs within some 

small scope. (D. Jackson, 2006)

Bounded Formal Verification



We’ll introduce the Z3 Solver, a popular formal methods tool used across many domains.

• Bug finding & verification: powers symbolic execution and static-analysis tools
• Constraint solving: finds configurations or schedules that satisfy complex interdependent rules
• Compilers & optimizers: LLVM-based tools to check that optimized code.
• Tool development:

• We’ve used Z3 in visualCaseGen, a custom CESM case configurator: Z3 validates setting in 
real time by analyzing dependencies, detecting conflicts, and explaining incompatibilities.

The Z3 Solver



Tomorrow’s Keynote: “Lean into Verifiable Intelligence”
• A talk about Lean, another formal verification tool, and how AI 

and formal reasoning are coming together to make systems 
both smarter and more trustworthy.

Formal Reasoning and AI

Soonho Kong
(Amazon)



Final Words



Coverage and Problem Sizes



Coverage and Problem Sizes



Coverage and Problem Sizes



No One-Size-Fits-All Solution

Each technique brings its own tradeoffs in effort, scope, and assurance.

• Unit testing: fast, focused, and essential
• Property-based testing: broad and exploratory
• Formal Verification: deep and exhaustive, but less practical

Choose based on your project’s needs and practical constraints.



Beyond Tools: A Scientific Mindset

• Start by thinking about the abstractions and properties your code should hold.
• Hypothesize about these properties through reasoning and specification.
• Attempt to refute your hypothesis through tests / verification. 
• Incrementally refine your code and your understanding based on the results.



Does the extra work slow us down?

• Yes, for one-off applications.
• But for code that lives beyond a few versions, the effort pays back:

• It enables quick inquiries, changes, and exploration of new ideas.



Thanks!

altuntas@ucar.edu
Link to survey:

https://www.surveymonkey.com/r/RFQYLG6
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