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Why this matters?

]

THEORY EXPERIMENT COMPUTATIONAL
SCIENCE

“Computational science now constitutes the third pillar of scientific inquiry.”
(Presidential Information Technology Advisory Committee Report, 2005)




The Goal

* Explore how to make scientific software more reliable,
understandable, and robust.

* We’ll aim to do so without losing the creativity and speed that
make research exciting.



The code-and-fix style

Write code
quickly to
get results

e write code quickly to get results,
e fix issues as they appear,

e and hope it holds together.

fix issues
as they
come up

The result? Code that works... most of the time.
But is fragile, hard to test, and tricky to extend.

And hope
it holds
together

The code-and-fix style



A scientific mindset

 Atheoryis scientific if it’s refutable.
e Similarly, a software can be scientific, if its testable / verifiable.

* So, we’ll go over practical techniques to:
* hypothesize: specify intent
* refute: test / verification
* refine code & understanding



; constructs. Rather, software is like a science. We show correctness by failing
Clean Architecture

AGatnans Gugeto to prove incorrectness, despite our best efforts.

Software Structure and Design

Such proofs of incorrectness can be applied only to provable programs.

Structured programming forces us to recursively decompose a program into a
set of small provable functions. We can then use tests to try to prove those

Robert C. Martin “Provable” here doesn’t refer to a mathematical proof,
Agile Manifesto, SOLID principles but to scientific reasoning: something that can be falsified
through experiments, or testing.



Decomposition

* Based on abstractions, i.e., the key structures, relations, features, etc.
* Decompose the code, into modules, classes, methods, functions, ...

* Such that each part
* has an isolated, clear purpose.
* exposes well-defined interfaces.
* isrefutable, i.e., testable.




Decomposition is the central software design task. (J. Ousterhout)

* One we can’t capture fully in a one-day tutorial, or in a few slides.
* Here, we focus on a few key principles for decomposing a large, monolithic
routine into smaller functions that facilitate testing and reasoning:
* Single purpose: each procedure should do one thing and do it clearly.
* General: avoid hard-coded values or hidden assumptions
* Explicit, narrow interfaces: small, coherent APIs that express intent
* Dependency injection: pass in policies or strategies, don’t grab globals.



Specification
Once we have modular pieces, we need to say what each one should do:
 Aspecification is a precise, refutable statement that defines:

* What properties, conditions, and constraints are expected to hold.
* What behaviors and outputs should result from given inputs.

* Levels of specification:
* System-level.
* Module/class/function level.
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What to specify?

 Assumptions: background facts we take as given (e.g., valid b.c.)
* Contracts: function preconditions and postconditions.

* Properties: logical, computational, or physical/scientific.



What to specify?

 Assumptions: background facts we take as given (e.g., valid b.c.)
* Contracts: function preconditions and postconditions.

* Properties: logical, computational, or physical/scientific.

Contract def div(x: float, y: float) —> float:
def div(x, y): Specification assert y != 0 # P
res =x/y > res =x/y # code
return res assert res x y == x #(Q

return res



How to specify?

In this tutorial, our main focus is function-level specification. As such,
we use a lightweight, practical style of specification that combines:
* Type annotations

e Assertions

Both pytest and hypothesis libraries rely on assertions.



Why specify?

* Testing: Reasoning artifacts (e.g., assertions) ease testing efforts.
 Change: To safely evolve or replace implementations.
* Reasoning and Understanding: To think rigorously about intent.

“Writing is Nature's way of showing you how sloppy your thinking is.” (Dick Guindon)



Implementation

With abstractions identified, pieces decomposed, and specifications written:
* implement code that satisfies them.

This shifts our mindset:

* Instead of starting with lines of code and hoping they work, we start with
clear expectations and then fill in implementations that must meet them.
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Testing & verification (i.e., refutation)

This is the final step. The majority of this tutorial is devoted to practical testing
and verification techniques. We’ll cover:

* Unit testing: for this input, expect this output
* Property-based testing: for all inputs satisfying preconditions, expect this relation to hold

* Bounded Formal Verification: prove that properties hold for all possible inputs
* Functional "off-offline” testing: real-world applications
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Waterfall?

“The initial design for a system or component is almost never the best one;
experience inevitably shows better ways to do things.” (J. Ousterhout, 2022)
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Waterfatl
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Waterfatl
Incremental

To enable incremental design & development:
* Tight feedback loops: Later work (impl/tests) can challenge and refine earlier choices.
* Move in small slices: specify just enough, implement a bit, test and revise.

How this works:
* Clear abstractions > easy to change parts without ripple.
* Clear, stable interfaces - refactor internals freely.
* Specs/contracts - instant oracles
* Fast unit/property tests > quick checks



A running example



A running example: The 1-D Heat equation



A running example: The 1-D Heat equation

n
A

U T U
Fi=—r Az
F; — Fiq
div(FE;
w(F;) = A

u = U + At - div(F)

1




A quick implementation
def solve_heat _eqgn(u@®, kappa, dx, dt, qL, gR, nt):

N = len(u@) # Number of grid points
F = [0.0] x (N+1) # Fluxes at interfaces
divF = [0.0] * N # Divergence of fluxes
u = ud.copyl) # temperature array

for _ in range(nt):
Flo]l, F[-1] = qL, gR
for 1 in range(1, N):
F[i] = -kappa * (ul[i]l - uli-1]) / dx
for 1 in range(N):
divF[i] = (F[i] - F[i+1]) / dx
for i in range(N):
uli] += dt x divF[i]

return u



A quick implementation

def solve_heat_eqn(u@, kappa, dx, dt, qL, gR, nt):

N = len(u@) # Number of grid points
F = [0.0] * (N+1) # Fluxes at interfaces
divF = [0.0] x N # Divergence of fluxes
u = ud.copy() # temperature array

for _ in range(nt):
Flel, F[-1] = gL, gR
for i in range(1, N):
F[i] = -kappa * (u[i] = uli-1]) / dx
for i in range(N):
divF[i] = (F[i] - F[i+1]) / dx
for i in range(N):
uli] += dt * divF[i]

return u

Quite straightforward and manageable, but
allows us to observe and generalize some
issues regarding testing/reasoning:

* Unclear abstractions: data structures and
relations not explicit.

* No reasoning artifacts: no assertions,
property specifications, or contracts.

* Mixed concerns: one function handling
multiple responsibilities.

* Opaque state: hard to inspect intermediate
results.

* No reuse or substitution: computations
tightly coupled.



Monolithic Code - Observations

For only ~10 lines of code, these issues may not seem significant.

Our aim is to discuss strategies and techniques generalizable to real applications:
* The same patterns/issues appear in routines with 100s of lines.
* There, these design flaws become real barriers to understanding and testing.



Design for Reasoning
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What we had: What we want:
* monolithic * separation of concerns
* mixed concerns * explicit expectations
 hardto test or extend e A structure we can

* lack explicit reasoning understand, test, extend



Abstraction — Deciding What Matters

Goal: Identify the key concepts that define the system.
* Focus on what we represent, not how we compute it.
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Concepts in Heat Equation Solver:
* Mesh > domain geometry. A collection of cells.
* Cellfields > quantities stored at cell centers (or cell avg.d)
* Face fields > quantities incident on cell interfaces
* Computations



Abstraction — Deciding What Matters

from dataclasses import dataclass

@dataclass
class Mesh:
"“"yUniform 1-D mesh."""

dx: float # cell size
N: int # number of cells

def cell _field(self) —-> vec:
return [0.0] x self.N

def face_field(self) —> vec:
return [0.0] * (self.N + 1)



Abstraction — Deciding What Matters

from dataclasses import dataclass

@dataclass
class Mesh:
"“"yUniform 1-D mesh."""

dx: float # cell size
N: int # number of cells

def cell _field(self) —-> vec:
return [0.0] x self.N

def face_field(self) —> vec:
return [0.0] * (self.N + 1)

Note that our approachis
mainly based on procedural
abstraction. We won’t rely
much on OOP features beyond
this simple data class.



Decomposition — Organizing the code

Goal: Split computation along abstractions.
* Each procedure should have a single, clear purpose.
* Procedures should be general. Avoid hard-coded assumptions.
« Keep them simple but composable.




Decomposition - The core API

# Procedures:
def apply_bc(f_out: vec, bc: vec) —> None:

"""Apply BCs by overriding first and last face quantities (f_out)."""

def diffusive_flux(f_out: vec, c: vec, kappa: float, dx: float) —> None:
"""Given a cell field (c), compute the diffusive flux (f_out)."""

def divergence(c_out: vec, f: vec, dx: float) —> None:
"""Compute the divergence of face quantities (f) and store in (c_out)."""

def step_heat_eqn(u_inout: vec, kappa: float, dt: float, mesh: Mesh, bc: vec):
"""Advance cell field u by one time step using explicit Euler method."""

def solve_heat_eqn(u@: vec, kappa: float, dt: float, nt: int, dx: float, bc: vec) —> vec:
"""Orchestrate nt steps over cell field u."""



Decomposition - The core API

# Procedures:
def apply_bc(f_out: vec, bc: vec) —> None:

"""Apply BCs by overriding first and last face quantities (f_out)."""

def diffusive_flux(f_out: vec, c: vec, kappa: float, dx: float) —> None:
"""Given a cell field (c), compute the diffusive flux (f_out)."""

Argument naming convention:

* c:cellfield

* f:facefield

* _out suffix: output argument

* _inout suffix: input/output argument

def divergence(c_out: vec, f: vec, dx: float) —-> None:
"""Compute the divergence of face quantities (f) and

def step_heat_eqn(u_inout: vec, kappa: float, dt: float,
"""Advance cell field u by one time step using explic

These general argument names make the
procedures reusable (in line with
abstraction by parameterization.)

def solve_heat_eqn(u@: vec, kappa: float, dt: float, nt:
"""Orchestrate nt steps over cell field u."""




Program to an interface, not an implementation

- Gamma et al. Design Patterns, 1995
Design each function around what it promises to do, not how it does it.

By depending only on clear, minimal interfaces (inputs, outputs, and contracts)
other parts of the code remain unaffected when internals change.



Specification

In addition to type annotations in core API, we can specify contracts:

def divergence(c_out: vec, f: vec, dx: float) —> None:
"""Compute the divergence of face quantities (f) and store in (c_out)."""
assert len(c_out) == len(f) - 1, "Size mismatch"
assert dx > @, "Non-positive dx"

{P} {Q} | {P}[E){Q}
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Specification

Beyond contracts and structural correctness, we can express:
* logical, computational, or physical/scientific properties

For the heat equation solver, examples include:

 Telescoping: sum of divergences equals boundary flux difference
 Conservation: total heat remains constant

Symmetry: symmetric initial conditions stay symmetric

* Monotonicity: No new extrema



Specifying the Telescoping Property
The sum of the divergence over all cells equals the net flux through the boundaries.

Zﬁ_ol(v -F); =Fy,— Fy



Specifying the Telescoping Property
The sum of the divergence over all cells equals the net flux through the boundaries.

Zz‘i—ol(v -F); =Fy,— Fy

Isolation of concerns and having well defined APls
facilitate specification and testing of such properties:

def telescoping(c, f, dx):
"""Check the finite volume telescoping property.'""
total divergence = sum(c) * dx
boundary_flux = f[0] - f[-1]
return total_divergence == approx(boundary_flux)



Implementation

With abstractions identified, pieces decomposed, and specifications written:
* implement code that satisfies them.

| {P} =]{Q}
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Implementation

def diffusive_flux(f_out: vec, c: vec, kappa: float, dx: float) —> None:
"""Given a cell field (c), compute the diffusive flux (f_out)."""
assert len(f_out) == len(c) + 1, "Size mismatch"
assert dx > @ and kappa > 0, "Non-positive dx or kappa"
for i in range(1, len(f_out) - 1):
f_out[i] = -kappa * (c[i] - c[i-1]) / dx

U — U1




Implementation

def diffusive_flux(f_out: vec, c: vec, kappa: float, dx: float) —> None:
"""Given a cell field (c), compute the diffusive flux (f_out)."""
assert len(f_out) == len(c) + 1, "Size mismatch"

def divergence(c_out: vec, f: vec, dx: float) —> None:
"""Compute the divergence of face quantities (f) and store in (c_out
assert len(c_out) == len(f) - 1, "Size mismatch"
assert dx > 0, "Non-positive dx"
for i in range(len(c_out)):
c_out[i] = (f[i] - f[i+1]) / dx

div(F;) =

F; — F; 4

Az




Implementation

def diffusive_flux(f_out: vec, c: vec, kappa: float, dx: float) —> None:

"""Given a cell field (c), compute the diffusive flux (f_out)."""

assert len(f_out) == len(c) + 1, "Size mismatch"

def divergence(c_out: vec, f: vec, dx: float) —> None:

R PNTY A 1 ";-:—;r\ ma et il

"""Compute the divergence of face quantities (f) and store in (c_out

def step_heat_eqn(u_inout: vec, kappa: float, dt: float, mesh: Mesh, bc:
"""Advance cell field u by one time step using explicit Euler method.'

assert dt > 0, "Non-positive dt"
assert mesh.N == len(u_inout), "Size mismatch"

F = mesh.face_field()
divF = mesh.cell field()

apply_bc(F, bc)
diffusive_flux(F, u_inout, kappa, mesh.dx)
divergence(divF, F, mesh.dx)

for i in range(mesh.N):
u_inout[i] += dt * divF[il

n+1

Uu.

T

= u; + At - div(F;)




Testing

In the remainder of this tutorial, we’ll cover several testing and verification
techniques in detail with and with hands-on exercises:

* Unit Testing

* Property-base testing

* Bounded formal verification

* Functional Testing

{P} {Q} | {P} 2){Q}
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Unit Testing

def test _divergence_telescoping(dx=1.0):
"""Check the finite volume telescoping property."""
F=1[2.0, 7.0, -5.0, -3.0]
divF = [0.90, 0.0, 0.0]
divergence(divF, F, dx) Manish Venumuddula
assert telescoping(divF, F, dx) (NSF NCAR)




Unit Testing

def test _divergence_telescoping(dx=1.0):
"""Check the finite volume telescoping property."""
F=1[2.0, 7.0, -5.0, -3.0]
divF = [0.0, 0.0, 0.0]
divergence(divF, F, dx)
assert telescoping(divF, F, dx)

(r3sw) [cgdm-flax: ~]$ pytest test_divergence.py



Unit Testing

* Unit tests are practical and useful.
* They are great for quick, focused feedback.
 Butthey only test the examples we think to write.



Property-Based Testing

* Forallinputs satisfying preconditions, check specified
relations/properties.
* Auto-generate many random inputs: explore cases we
might never think to test.
* Therandomness is smart: Deepak Cherian
* guided by strategies and constraints. (Earthmover)
* target edge cases.
* shrink counterexamples.




Property-Based Testing

test_telescoping_property

=




Functional Testing

 Applythis mindset to a Python version of a production code that
simulates wildfire behavior (translated from Fortran).

* Explore scientific representations:
* usingsynthetic fuels and comparing to observational data.

Adrianna Foster
(NSF NCAR)
“Functional testing”

Propagating flux vs. SAV
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Redrawn from Andrews et al. 2018



“Testing can be used to show the presence of bugs,
but never to show their absence.”
- Edsger W. Dijkstra



Bounded Formal Verification

 Symbolically check whether properties hold for all possible inputs within specified ranges.
* Less practical, but still achievable when we have the right abstractions and decompositions.

def prove_telescoping(N):
dx = Real('dx")

f = [Real(f'f{i}"') for i in range(N+1)]

c = [Real(f'c{i}') for i in range(N)]

s = Solver()

s.add(dx > 0) # Preconditions: physical constraints
s.add(divergence(c, f, dx)) # code: divergence

s.add(Not(telescoping(c, f, dx)))# Postcondition: telescoping property
return s.check() == unsat




Bounded Formal Verification

By reasoning symbolically:
* we move from testing some cases to proving properties for all cases within a defined scope.

This gives scope completeness:
* The solver explores every combination of inputs allowed by the specification.

And thanks to the small scope hypothesis:
* Ahigh proportion of bugs can be found by checking the program for all inputs within some

small scope. (D. Jackson, 2006)



The Z3 Solver

We’ll introduce the Z3 Solver, a popular formal methods tool used across many domains.

 Bugfinding & verification: powers symbolic execution and static-analysis tools
 Constraint solving: finds configurations or schedules that satisfy complex interdependent rules
« Compilers & optimizers: LLVM-based tools to check that optimized code.

* Tooldevelopment:
* We’ve used Z3 in visualCaseGen, a custom CESM case configurator: Z3 validates setting in

real time by analyzing dependencies, detecting conflicts, and explaining incompatibilities.

L ilnfo C'Reset + Revert ¥ Proceed ERROR: Invalid assignment of COMP_LND to dind. Reason:
CAM-DLND coupling is not supported.

v ATM ¥ LND ¥ ICE ¥ OCN ¥ ROF ¥ GLC ¥ WAV

datm clm cice mom rtm cism ww3

Close

XK satm X dind X dice docn mosart dglc X dwav
cam sind sice socn mizuroute sglc swav

drof

srof



Formal Reasoning and Al

Tomorrow’s Keynote: “Lean into Verifiable Intelligence”
« Atalk about Lean, another formal verification tool, and how Al
and formal reasoning are coming together to make systems

both smarter and more trustworthy.

Soonho Kong
(Amazon)

VN

THEOREM PROVER




Final Words



Coverage and Problem Sizes

® Unit test




Coverage and Problem Sizes

® Unittest
® Property-based test
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No One-Size-Fits-All Solution

Each technique brings its own tradeoffs in effort, scope, and assurance.
* Unittesting: fast, focused, and essential
* Property-based testing: broad and exploratory

* Formal Verification: deep and exhaustive, but less practical

Choose based on your project’s needs and practical constraints.



Beyond Tools: A Scientific Mindset

e Start by thinking about the abstractions and properties your code should hold.
* Hypothesize about these properties through reasoning and specification.

* Attempt to refute your hypothesis through tests / verification.

* Incrementally refine your code and your understanding based on the results.



Does the extra work slow us down?

* Yes, for one-off applications.
 Butfor code thatlives beyond a few versions, the effort pays back:
* |tenables quickinquiries, changes, and exploration of new ideas.



A

Thanks!

BSSw fellowship

altuntas@ucar.edu

Link to survey:
https://www.surveymonkey.com/r/RFQYLG6
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