
Modeling a Discrete Wet-Dry Algorithm
for Hurricane Storm Surge in Alloy

John Baugh(B) and Alper Altuntas

Civil, Construction, and Environmental Engineering,
North Carolina State University, Raleigh, NC, USA

{jwb,aaltunt}@ncsu.edu

Abstract. We describe an Alloy model that helps check the correctness
of a discrete wet-dry algorithm used in a system for hurricane storm surge
prediction. Derived from simplified physics and encoded with empirical
rules, the algorithm operates on a finite element mesh to allow the propa-
gation of overland flows. Our study is motivated by complex interactions
between the algorithm and a recent performance enhancement to the
system that involves mesh partitioning. We briefly outline our approach
and describe safety properties of the extension, as well as directions for
future work.

1 Introduction

The tools and techniques most often associated with scientific computing are
those of numerical analysis and, for large-scale problems, structured parallelism
to improve performance while limiting complexity. Beyond those conventional
tools, we also happen to see a role for state-based methods and present one
such application here using the Alloy language [4]. Our immediate concern is
the correctness of an extension made by our group to ADCIRC [5], a finite
element code widely used by the U.S. Army Corps of Engineers and others
to simulate storm surge. ADCIRC itself has been extensively validated against
actual flooding conditions, with simulation times of about 1 000 CPU hours.

To get a sense of the problem, the mesh in Fig. 1 depicts a shoreline extracted
from a larger domain with 620 089 nodes and 1 224 714 triangular elements that
encompasses the western North Atlantic Ocean, the Caribbean Sea, and the Gulf
of Mexico. Forced with winds and tides, three primary routines drive the physics
of the model and are executed in succession at each time step. The first finds the
free surface elevation for each node in the domain. Next the wet-dry status of
each node is determined via a series of checks involving water surface elevation,
velocity, and prior wet-dry states. Finally, velocities at each node are determined
by solving the shallow water equations.

Our extension, now included in ADCIRC, is an exact reanalysis technique
that enables the assessment of local subdomain changes with less computational
effort than would be required by a complete resimulation [1]. Figure 2 shows
a domain Ω partitioned at interface Γ into a subdomain ΩI , representing the

c© Springer International Publishing Switzerland 2016
M. Butler et al. (Eds.): ABZ 2016, LNCS 9675, pp. 256–261, 2016.
DOI: 10.1007/978-3-319-33600-8 18



Modeling a Discrete Wet-Dry Algorithm 257

Fig. 1. Finite element mesh

I

E

x

y

Fig. 2. Region of interest ΩI

interior of a geographic region of interest, and ΩE . The technique starts with a
simulation on Ω that produces elevations, velocities, and wet-dry states that are
used as boundary conditions along interface Γ in subsequent low-cost simulations
on ΩI . We refer to the first simulation as a full run and the latter as a subdomain
run. A correctness condition requires that boundary conditions be enforced in
such a way that results obtained in both cases match within subdomain ΩI .

A particularly tricky interface condition arises from ADCIRC’s discrete wet-
dry algorithm, which operates on a finite element mesh to accommodate advanc-
ing and receding flood waters [3]. We begin by describing a spatial representation
in Alloy that forms the basis for state used by the algorithm.

2 Statics: Representing a Mesh

Finite element methods work by discretizing a continuous domain and approx-
imating a solution with piecewise polynomials. The resulting mesh of elements
and nodes can be thought of as a triangulation of a surface. We begin with a
representation of mesh topology and later add physical attributes:

sig Mesh {
triangles: some Triangle

}
abstract sig Vertex {}

abstract sig Triangle {
edges: Vertex → Vertex,
adj: set Triangle

}
Facts are defined to ensure that every triangle has three directed edges and is
oriented, i.e., its edge set forms a ring. Distinct triangles with common anti-
parallel edges define the adj relation and, correspondingly, the dual of a mesh:

fact { all t, t’: Triangle | t in t’.adj iff one ∼(t.edges) & t’.edges }
Using adj, we ensure that a mesh is connected and oriented; edges are required
to be unique. Other facts prevent the possibility of local “cut points” in the mesh
as well as overlapping triangles, with the latter following from Euler’s formula,
T − E + V = 1, where T triangles, E (undirected) edges, and V vertices exist.
These are specified in terms of helper functions and predicates that define and
distinguish between interior and border vertices and edges.



258 J. Baugh and A. Altuntas

Algorithm 1. Wetting and Drying

0: for e in elements do � start with all elements being wet
make e wet

1: for n in nodes do � make nodes with low water column height dry
if Wn and Hn < H0 then

Wn ← false, W t
n ← false

2: for e in elements do � propagate wetting
if e has exactly 2 wet nodes and Vss(e) > Vmin then unless slow flow

Let j be the remaining dry node | W t
j ← true

3: for e in elements do � allow water to build up
find nodes i and j of e with highest water surface on downhill slopes
if Hi, Hj < 1.2H0 then

make element e dry

4: for n in nodes do � make landlocked nodes dry
if W t

n and n on only inactive elements then
W t

n ← false

5: for n in nodes do � set the final wet-dry state for nodes
Wn ← W t

n

3 Dynamics: Wetting and Drying

The purpose of the wet-dry routine, characterized in Algorithm 1, is to determine
which nodes participate in the calculation of physical properties in the next
time step. Its output is Wn for each node n, which is set true when the node is
wet. Within the algorithm, both nodes and elements have intermediate wet-dry
states, determined by current physical properties, that are set and unset, e.g.,
W t

n, which is true when a node is “temporarily” wet. Additionally, as part of the
algorithm, an element is said to be active if it is wet and has three temporarily
wet nodes, and a node is landlocked if it is incident only to inactive elements.

The algorithm has both spatial and temporal dimensions, with the former
being maintained by vertices and triangles that are now extended to include
features of the problem domain:

sig Node extends Vertex {
W, Wt: Bool → State,
H: one Height

}
sig State {}

sig Element extends Triangle {
wet: Bool → State,
slowFlow: one Bool,
lowNode: one Node

}
In addition to discrete wet-dry states n.W and n.Wt for node n, and e.wet

for element e, we incorporate physical attributes and tests on them by making
use of predicate abstraction: a water column height n.H may be low (Hn < H0),
medium (H0 ≤ Hn < 1.2H0), or high (Hn ≥ 1.2H0), as used in parts 1 and 3;
flow across an element e.slowFlow is true when Vss(e) ≤ Vmin, as used in part 2;
and e.lowNode is an element’s node with the lowest water surface, supporting



Modeling a Discrete Wet-Dry Algorithm 259

the test in part 3 of the algorithm. To accommodate local state changes within a
mesh, a State atom is added in the last column of the W , Wt, and wet relations.

We allow the algorithm to begin with arbitrary n.W states, as though they
had been produced in a prior time step, and check correctness at the end. Each
part of the algorithm is modeled by a predicate defining the state change:

pred part2 [s, s’: State] {
noElementChange[s, s’]
all n: Node | n.W.s’ = n.W.s

and (make wet[n, s] implies n.Wt.s’ = True else n.Wt.s’ = n.Wt.s) }
where noElementChange[s, s’ ] specifies the frame condition, and make wet [n, s]
defines the conditions in part 2 that cause a node to become wet, namely:

pred make wet [n: Node, s: State] {
some e: Element | e.slowFlow = False and loneDryNode[n, e, s] }

pred loneDryNode [n: Node, e: Element, s: State] {
n in dom[e.edges] and n.W.s = False and wetNodes[e, s] = 2 }

fun wetNodes [e: Element, s: State]: Int {
#(dom[e.edges] <: W).s.True }

Other parts of the algorithm are similarly defined.

4 Full and Subdomain Runs

With the above, we are able to represent a mesh and the dynamic behavior of
ADCIRC’s wet-dry algorithm by chaining together its parts and thereby con-
straining intermediate states to form a trace. What is left is to distinguish
between full and subdomain runs (denoted F and S), which we achieve by
extending State so that a unique trace can be generated for each type of run:

sig F, S extends State {}
Then, by making use of predicate abstraction, we can have a single mesh instance
do double duty and serve the needs of both. Here is how. We recognize that,
within ΩI , the two types of runs perform identical computations, though on
their own state variables. Where the two cases differ is along interface Γ .

For a full run, we represent only ΩI and use nondeterminism along Γ to model
arbitrary behavior external to it, as depicted in Fig. 3 (in white). Boundary nodes
are defined to realize that capability:

sig Boundary extends Node {
allowsWetting, allowsDrying: one Bool }

where n.allowsWetting is true when a node n on Γ in a full run is incident to an
imaginary element e in ΩE that has exactly two wet nodes and Vss(e) > Vmin,
and n.allowsDrying is likewise true when such an element is active.



260 J. Baugh and A. Altuntas

I

E

x

y

Fig. 3. Mesh for Full Run

I

E

x

y

Fig. 4. Mesh for Subdomain Run

The conditions defined by the two fields can then be used in parts 2 and 4
of the algorithm, respectively, to account for interactions with ΩE in a full run.
Within part 2, for instance, make wet now becomes:

pred make wet [n: Node, s: State] {
(some e: Element | e.slowFlow = False and loneDryNode[n, e, s])
or (s in F and n in Boundary and n.allowsWetting = True) }

Intuitively, the updated predicate makes clear that subdomains require state
from a prior full run on Γ if they are to produce final wet states that match
their full domain counterparts.

Naturally, for a subdomain run, we represent only the portion of the domain
over which an ADCIRC simulation is performed, i.e., the geographic region of
interest, ΩI , as shown in Fig. 4 (in white). Absent any forcing along the interface,
results internal to it clearly diverge from those produced by a full run. The
following assertion confirms this by producing a counterexample:

assert sameFinalStates {
all n: Node | n.W.FD/last = n.W.SD/last }

where FD is an ordering on F , and SD is an ordering on S, so n.W.FD/last
denotes the final wet state of a node n in a full run, for instance.

4.1 Enforcing Boundary Conditions

For actual simulations in ADCIRC, we can store the intermediate states of
boundary nodes produced during a full run, and then use them as boundary
conditions in a subdomain run. Doing so makes subsequent low-cost simulations
possible, since all computations external to a geographic region of interest, ΩI ,
are avoided. In practice, that cost is only a fraction of a percent of the time
required for full runs [1].

The value of state-based modeling in Alloy is in gaining confidence that the
boundary conditions are right, since it facilitates experimentation with (a) the
amount of state along interface Γ needed from a full run, and (b) the manner in



Modeling a Discrete Wet-Dry Algorithm 261

which that state is enforced in subdomain runs. To satisfy the sameFinalStates
assertion, for instance, we pull wet-dry states out of a full run and apply them
to a subdomain run. This modification is made to the last conjunct in the part2
predicate—call it x—so that it becomes:

(s in S and n in Boundary implies n.Wt.s’ = n.W.FD/last else x)

With a similar change in part 4, we are able to show that enforcing intermediate
wet-dry states on subdomain boundary nodes with the corresponding final wet-
dry states obtained from a full run is sufficient to satisfy safety properties. Thus,
for actual simulations in ADCIRC, we can record a minimal amount of data
from a full run—the final wet-dry states on Γ—and during a subdomain run
force those states in parts 2 and 4 of the wet-dry algorithm.

5 Conclusion and Future Work

As far as we are aware, ours is the first study to model in Alloy some of the
discrete computational aspects of a finite element solver for systems of partial
differential equations. Among several related studies, however, are one that uses
Larch and CCS on an illustrative numerical algorithm [2] and another that com-
bines symbolic execution and model checking for numerical subroutines [6].

Our look at model checking began with a question ADCIRC developers raised
but were unable to answer without resorting to experiments: how is it that an
element with three wet nodes can apparently be dry? We quickly put together
Promela/SPIN and FSP/LTSA models that produced traces from a limited set of
constructively-defined topologies. A strength of Alloy, of course, is model gener-
ation, allowing mesh topologies to be defined by declarative properties instead of
trying to devise an algorithm to produce them. Given the prevalence of network-
like structures of various types in science and engineering, we imagine that Alloy
might find further uses there. Our own efforts are focused on a reimplemen-
tation of ADCIRC that incorporates adaptivity both for reanalysis and mesh
refinement. We expect to make use of Alloy’s support for experimenting with
abstractions, building object models, and finding representation invariants.

References

1. Baugh, J., et al.: An exact reanalysis technique for storm surge and tides in a
geographic region of interest. Coast. Eng. 97, 60–77 (2015)

2. Chadha, H., Baugh, J., Wing, J.: Formal specification of concurrent systems. Adv.
Eng. Softw. 30, 211–224 (1999)

3. Dietrich, J.C., Kolar, R.L., Luettich, R.A.: Assessment of ADCIRC’s wetting and
drying algorithm. Dev. Water Sci. 55, 1767–1778 (2004)

4. Jackson, D.: Software Abstractions: Logic, Language, and Analysis (revised edition).
MIT Press, Cambridge (2012)

5. Luettich, R.A., Westerink, J.J.: Formulation and Numerical Implementation of the
2D/3D ADCIRC Finite Element Model Version 44.xx. http://www.adcirc.org

6. Siegel, S., et al.: Combining symbolic execution with model checking to verify par-
allel numerical programs. ACM TOSEM 17(2), 1–34 (2008). Article no. 10

http://www.adcirc.org

	Modeling a Discrete Wet-Dry Algorithm for Hurricane Storm Surge in Alloy
	1 Introduction
	2 Statics: Representing a Mesh
	3 Dynamics: Wetting and Drying
	4 Full and Subdomain Runs
	4.1 Enforcing Boundary Conditions

	5 Conclusion and Future Work
	References


