
Verifying ParamGen: A Case Study in Scienti�c
Software Abstraction and Modeling

Alper Altuntas
altuntas@ucar.edu

National Center for Atmospheric
Research

Boulder, CO, USA

John Baugh
jwb@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Jesse Nusbaumer
nusbaume@ucar.edu

National Center for Atmospheric
Research

Boulder, CO, USA

Abstract
We� introduce�ParamGen,�an� infrastructure� library�for�cli-
mate�models� to�generate� input��les�that�specify�physics,�
parameterizations,�and�other�behavior.�ParamGen�supports�
arbitrary�Python�expressions�for�specifying�a�default�set�of�
runtime�parameters�and�values,�thereby�providing�a�high�
level�of�expressiveness�and��exibility.�Initially�developed�for�
the�MOM6�ocean�component�in�Community�Earth�System�
Model�(CESM),�ParamGen�is�now�used�by�several�additional�
CESM�components.�Therefore,�it�is�of�high�importance�that�it�
operates�correctly,�i.e.,�absent�any�undesired�and�unexpected�
behavior.�To�that�end,�we�develop�an�abstract�veri�cation�
model�of�ParamGen�in�Alloy,�a�software�modeling�and�analy-
sis�tool�with�a�declarative�language�that�combines��rst-order�
logic�and�relational�calculus.�We�evaluate�the�correctness�of�
ParamGen�via�Alloy�and�discuss�how�abstract�models�and�
formal�veri�cation�can�help�quickly�frame�questions�and�get�
answers�regarding�the�structure�and�behavior�of�our�scien-
ti�c�computing�applications.�We�also�describe�our�experience�
in�coming�to�a�cleaner�and�well-formed�software�design�and�
abstractions�as�a�result�of�the�modeling�exercise�we�present�
in�this�study.

CCS�Concepts:� •�Software�and�its�engineering�!�Formal�
software�veri�cation.

Keywords:�Alloy,�CESM,� Formal� Speci�cation,�Scienti�c�
Computing
ACM�Reference�Format:
Alper�Altuntas,�John�Baugh,�and�Jesse�Nusbaumer.�2023.�Verifying�
ParamGen:�A�Case�Study�in�Scienti�c�Software�Abstraction�and�
Modeling.�In�Proceedings�of�2023�Improving�Scientific�Software�Con-
ference�(ISS’23).�NCAR,�Boulder,�CO,�USA,�9�pages.�https://
doi.orH����������K�F��TT��

1� Introduction
Earth�system�models�are�typically�configured�with�multiple�
runtime�input�parameter�files�to�specify�model�physics,�pa-
rameterizations,�numerics,�and�other�behavior.�These�files�
may�contain�tens�to�hundreds�of�parameters�with�intra-�and�
inter-component�dependencies�and�constraints.�Therefore,�
modeling�frameworks,�such�as�that�of�the�Community�Earth

ISS’23,�April�2023,�Boulder,�CO,�USA�2023.�
https://doi.org/��������K�F��TT��

System Model (CESM), include infrastructure libraries that
automatically generate default input parameter �les corre-
sponding to consistent and valid con�gurations. In this study,
we introduce one such infrastructure library, called Param-
Gen. This library supports arbitrary Python expressions for
specifying default runtime parameters and values, thereby
providing model developers with a high level of expressive-
ness and �exibility.
We initially developed ParamGen as part of an e�ort to

incorporate the MOM6 ocean model into CESM. MOM6 is de-
veloped and maintained by a consortium of ocean modelers
with members from NOAA, NCAR, NASA, and other model-
ing centers and universities. While the core MOM6 codebase
is shared by all members of the consortium, each modeling
center couples MOM6 with a unique set of components by
using distinct coupling infrastructures and superstructures.
The motivation for the development of ParamGen, therefore,
arose from a need to bring together the well-established
conventions and work�ows of MOM6 and those of CESM.
For instance, MOM6 expects at least three input parameter
�les, each having a vastly di�erent syntax and correspond-
ing to di�erent aspects of the model such as parameteriza-
tions, logistics, and diagnostics. CESM, on the other hand,
assigns a single input parameter �le for each component
where users may specify con�guration customizations. Ad-
ditionally, CESM allows users to make changes in various
intra- and inter-component settings via the execution of a
Python script called xmlchange. ParamGen ensures that any
changes made by the user through CESM mechanisms are
appropriately and coherently propagated to the MOM6 input
�les. For instance, when users specify the ocean coupling in-
terval via the xmlchange command, ParamGen ensures that
the internal MOM6 timesteps are compatible with CESM’s
ocean coupling interval: In the absence of such compatibil-
ity, the simulation may lead to instabilities or invalid model
results.

ParamGen has recently been incorporated in CESM’s case
control system called the Common Infrastructure for Mod-
eling the Earth Systems (CIME) [11]. Its incorporation into
CIME has facilitated its adoption by several additional com-
ponents such as the Community Atmosphere Model (CAM).
Before the adoption of ParamGen, CAM developers main-
tained multiple markup �les and an ad hoc Perl script to

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ISS’23, April 2023, Boulder, CO, USA Altuntas, Baugh, and Nusbaumer

specify and evaluate parameter values that depend on model
grids and other physics packages. Adoption of ParamGen
has eliminated the need to maintain multiple markup �les
and an ad hoc script, which consequently improved the main-
tainability and ease of use.
Given its critical role in ensuring the consistency and

validity of model parameters, it is of high importance that
ParamGen functions reliably, i.e., that it is bug-free and op-
erates as expected at all times. To ensure the reliability of
ParamGen, CESM developers routinely carry out unit and
integration tests. However, testing is incomplete:

“Testing can be used to show the presence of
bugs, but never to show their absence [6].”

In this study, we describe a lightweight formal methods
approach to gain further con�dence. Speci�cally, we present
a formal speci�cation of ParamGen in Alloy, a software mod-
eling and analysis tool with a declarative language that com-
bines �rst-order logic and relational calculus [8]. Using the
automatic analysis feature of Alloy, we check for violations
of a number of safety conditions that we specify and con-
�rm that no counterexample exists. In addition to ensuring
further reliability and con�dence, we discuss several addi-
tional bene�ts of formal speci�cation, such as coming to a
cleaner software architecture and well-formed abstractions
and concepts.
In the next section, we describe the ParamGen library

in detail. We then provide brief background information
on Alloy, which is followed by the description of our Alloy
model of ParamGen. We demonstrate how Alloy Analyzer
can quickly check safety conditions and ensure the correct-
ness of the structure and behavior of our scienti�c computing
applications. As an added bene�t, we discuss how formal
speci�cation improves our understanding of the software
systems we build, through which we can end up with better-
formed abstractions and clearer code implementations.

2 ParamGen
ParamGen is a lightweight, generic Python module for gen-
erating runtime input parameter �les for earth system mod-
eling applications. The ParamGen module supports arbitrary
Python expressions for the speci�cation of model input pa-
rameters. This provides a high level of �exibility and gener-
icity.
ParamGen infers parameter values from templates, i.e.,

generic and comprehensive speci�cations of parameters and
values. Templates are typically speci�ed in a markup format
and put together and maintained by the model developers.
ParamGen is agnostic of any implementation-speci�c details
of modeling frameworks, components, or input/output for-
mats. Yet several widely used markup formats are readily
available in ParamGen as supported template formats. These
are xml, yaml, and json formats. The only out-of-the-box

output format, on the other hand, is the Fortran namelist for-
mat. New input and output formats can easily be introduced
by application developers via class inheritance.

2.1 ParamGen Templates
A complete ParamGen template must contain all the neces-
sary information to generate a model input parameter �le
for all cases. In the simplest case, a template entry consists
of a key-value pair:

NIHALO: 2

In the above template entry, NIHALO corresponds to a
model parameter whose value is to be set to 2 in all cases. If
instead, the value of a particular parameter is dependent on
certain criteria, we can specify so by listing value alterna-
tives and by preceding each value alternative by a guard, i.e.,
a logical statement that determines whether the following
value is a valid choice. For example:

NIGLOBAL:
$OCN_GRID == �g16�:

320
$OCN_GRID == �t061�:

540

Depending on which preceding guard evaluates to true,
the NIGLOBAL parameter above gets set to either 320 or 540.
The guards for the NIGLOBAL variable are mutually exclu-
sive. But in other parameter speci�cations where multiple
guards may evaluate to true at the same time, the default (but
con�gurable) ParamGen behavior is to pick the last valid
value.

While the guards above are equality checks, a ParamGen
guard may be any arbitrary Python expression that evalu-
ates to true or false. The OCN_GRID variable appearing in
both guards above corresponds to the ocean model grid, a
high-level model setting predetermined by the user while
creating an experiment, i.e., an instance of a model simula-
tion. OCN_GRID is an example of an expandable variable. In
ParamGen, expandable variables work similarly to how they
work in shell scripting languages. When ParamGen reads in
and interprets a template entry, it replaces the occurrences
of expandable variables with their actual values.

Guards are useful when the set of guard: value alternatives
is small. If, however, the set of alternatives is large or in�nite,
we may instead choose to specify all value alternatives via a
generic, single Python formula:

DT_TERM:
= (($PERIOD ==�decade�) * 86400 * 3650 +

($PERIOD ==�year�) * 86400 * 365 +
($PERIOD ==�day�) * 86400 +
($PERIOD ==�hour�) * 3600)/ $OCN_NCPL

2

Verifying ParamGen: A Case Study in Scientific So�ware Abstraction and Modeling ISS’23, April 2023, Boulder, CO, USA

The DT_THERM parameter above corresponds to the MOM6
thermodynamic timestepwhose value is speci�ed as a Python
expression involving the coupling period PERIOD and ocean
coupling interval OCN_NCPL, both of which are high-level
settings predetermined by the user before ParamGen comes
into play.

Internally, ParamGen templates are stored in nested Python
dictionaries where keys may correspond to labels (variable
names, namelist groups, property names, etc.) or guards. The
distinction between labels and guards is that guards are ar-
bitrary Python expressions evaluating to true or false while
labels are either string literals or arbitrary Python expres-
sions that evaluate to strings.

2.2 ParamGen Schema
The below list summarizes some of ParamGen’s features that
make it quite �exible when it comes to specifying a template.

• Expandable variables and arbitrary Python expressions
can appear anywhere in a template: in labels, guards,
or value speci�cations.

• There can be multiple labels along a branch, e.g., to
specify namelist groups. parameter names, and param-
eter properties.

• There can be multiple (nested) guards along a branch.
• There is no restriction on the ordering of guards and
labels: Guards can appear before, after, or in between
labels and vice versa.

Nevertheless, there are a couple of schema rules that must
be adhered to by all template speci�cations:

1. There must be at least one label along each template
branch.

2. If a key is a guard, then all of its siblings (i.e., keys of
the same dictionary) must also be guards.

As an example, the below template entry violates the
second schema rule since description and $OCN_GRID ==
�g16� (a label and a guard, respectively) are keys of the same
dictionary:

NIGLOBAL:
description:
�grid points in x-dir.�

$OCN_GRID == �g16�:
320

This violation may be eliminated by, for instance, adding
a value label that precedes the guard speci�cation:

NIGLOBAL:
description:

�grid points in x-dir.�
value:

$OCN_GRID == �g16�:
320

Here, the intention is to eliminate any semantic ambiguity
that may result from specifying labels and guards at the same
level.

2.3 The reduce()method
The main ParamGen operation is the reduce() method that
reads in and interprets a template speci�cation and generates
the input parameter �le depending on some high-level model
settings predetermined by the user. The reduce() method
operates by recursively traversing all the keys and values
of the template and applying in-place modi�cations such
as expanding variables, evaluating arbitrary Python expres-
sions, and imposing guards by dropping template branches
including guards that evaluate to false.

As a recursive operation with in-place data modi�cations,
the reduce() method brings about substantial algorithmic
complexity. This complicates software assurance e�orts. An-
other factor that contributes to this complexity is that Param-
Gen allows for great �exibility in specifying templates, thereby
requiring many di�erent layouts and topologies to be ac-
counted for. These factors motivate our exploration of light-
weight formal methods and Alloy as a complementary means
to testing for further con�dence.

3 Alloy
Alloy is a software modeling and analysis tool with a declar-
ative language that combines �rst-order logic and relational
calculus [8]. The Alloy language is simple, precise yet pow-
erful and quite elegant. As a high-level modeling language,
Alloy allows modelers to specify software systems at an ab-
stract level, i.e., at the software and algorithm design level,
and above the implementation-speci�c details.
Alloy is a declarative language, so it doesn’t allow state

changes. However, dynamic behavior may be emulated by
using the prime (0) operator which is used to denote the
value of a variable at a (virtual) next state.

In Alloy, everything is a set. Therefore, common operators
such as + and - are reserved for set operations. For arithmetic
addition and subtraction, for instance, the modelers are to
use functions add and sub, respectively. For example, the
below Alloy statement increments the value of an arbitrary
variable x by one. Note the usage of the prime (0) operator
to refer to the value of x at the next state.

x� = x.add[1]

In Alloy, new sets may be introduced via signature dec-
larations. Similar to classes in object-oriented languages,
signatures can have members, or �elds in Alloy nomencla-
ture. Below is an example declaration of a signature A, that
has a �eld called x, which points to an instance of another
signature B:

3

ISS’23, April 2023, Boulder, CO, USA Altuntas, Baugh, and Nusbaumer

sig A {
x: B

}

The x �eld of an arbitrary instance a of Amay be accessed
via the dot (.) operator:

a.x

Fieldsmay be thought of as relations. In the above example,
x is a relation from A to B. As a language based on relational
calculus, Alloy provides a number of relational operators,
one of which is the arrow product that may be used to refer
to a relation from a set % to set & :

% ! & : every combination of tuples (?,@) for ? 2 % and
@ 2 & .

Relational multiplicity keywords may be used to restrict
the multiplicities of a relation. For instance:

% ! lone & : each member of % maps to zero or one
member of & .

Some of the remaining Alloy features and operations will
be brie�y described in the next section as we encounter them
in our Alloy model of ParamGen. For detailed instructions
on the Alloy language and analyzer, users are referred to an
online tutorial [5].

4 Modeling ParamGen in Alloy
For the development of the Alloy model of ParamGen, we
adhere to a customary work�ow. As summarized in Figure
1, the main steps of the work�ow consist of specifying the
two major aspects of any software system: structure and dy-
namics. After these aspects are speci�ed, users may instruct
Alloy to generate arbitrary instances and transitions for vi-
sual analysis. Finally, an automated and rigorous analysis
is carried out by Alloy to check for any assertion violations
within a given bound.

4.1 Structure
As a �rst step, we specify the main ParamGen structure
in Alloy, that is the template data structure. In the origi-
nal ParamGen source code, templates are implemented via
nested Python dictionaries. As a simple and abstract lan-
guage, Alloy doesn’t intrinsically include compound data
structures like dictionaries or hash tables. Therefore, we
begin our modeling e�ort by �rst specifying an abstract
representation of nested Python dictionaries:

sig Dict {
contents: set Key

}

abstract sig Key {
var map : lone Dict+Value

}

1.a Specify the structure

1.b Inspect instances

2.a Specify the dynamics

2.b Inspect transitions

3. Rigorous Analysis

re�ne if needed

re�ne if needed

Figure 1. A customary work�ow for modeling a software
system in Alloy. Steps 1.a and 2.a correspond to user input in
the form of model speci�cation. In steps 1.b and 2.b, arbitrary
model instances generated by Alloy are visually inspected
by the users to identify and address any apparent �aws. In
the �nal step, the Alloy analyzer automatically checks for
all possible states and transitions within a given bound.

sig Value {}

The Dict signature above models Python dictionaries. Its
contents �eld is a set of Keys, which is subsequently de�ned
as a signature with a mutable1 �eld called map. Dictionary
keys can map to either values or other dictionaries (in the
case of nested dictionaries). Thus, the map �eld points to
(zero or one member of) set union of Dict and Value sig-
natures, the latter of which is speci�ed to have no �elds
and corresponds to an abstract representation of parameter
values.

Notice that the Key signature de�nition is preceded by
the abstract keyword. Abstract signatures are similar to
abstract classes in object-oriented languages: They are used
as base signatures for derived signatures (or, extensions in
Alloy nomenclature). Below are the three extensions of the
Key signature:

sig Label extends Key {}
sig Guard extends Key {}
sig Root extends Key {}

{no this.~contents}

All three extensions above have empty signature bodies,
so they don’t have any �elds other than the map �eld that
they inherit from the Key signature. The Label signature
corresponds to dictionary keys that are of type string, while
1The var keyword designates �elds and signatures as mutable entities.

4

Verifying ParamGen: A Case Study in Scientific So�ware Abstraction and Modeling ISS’23, April 2023, Boulder, CO, USA

Figure 2. An arbitrary Alloy model instance satisfying the
initial ParamGen structure speci�cation.

the Guard signature corresponds to keys that are logical
expressions. The Root key is used as a modeling shortcut
to refer to the outermost dictionaries in nested dictionaries.
Notice that a fact2 statement is attached to the Root signature
de�nition. This fact statement makes use of an existential
quanti�er no (empty set) and relational transpose operator
(⇠). Simply, it states that the set of dictionaries that contain
root key instances is an empty one.
Having de�ned all the conceptual entities of the Param-

Gen structure, we can now instruct the Alloy analyzer to
generate arbitrary instances that satisfy our structure speci�-
cation. One such model instance is shown in Figure 2, where
two issues stand out: Label1 is simultaneously contained in
two di�erent dictionary instances, Dict1 and Dict2. Simi-
larly, the Value instance is mapped to by two distinct label
instances, Label0 and Label1.
To eliminate these �aws, we specify the following asser-

tions:

// each item can have at most one key
all i: Dict+Value |

lone i.~map

// each key can be owned by one dict
all k: Key |

lone k.~contents

2Facts are model constraints that are speci�ed to hold at all times.

Figure 3. An arbitrary Alloy model instance satisfying the
initial ParamGen structure speci�cation and the �rst set of
assertions.

The �rst assertion above states that for each instance i
of the set union of dictionaries and values, there exists at
most one (lone) key that maps to i. Here, we make use of
the relational transpose operator ⇠ to invert the map relation
and, so, to refer to keys that map to i. The second assertion
above states that for each Key instance k, there exists at most
one dictionary that contains k. In the latter assertion, we
again use the relational transpose operator ⇠ to invert the
contents relation and to refer to dictionaries that contain k.

Having incorporated these facts, we instruct Alloy to gen-
erate new model instances and visually con�rm that none of
the instances exhibit these structural �aws. However, one of
the resulting instances, shown in Figure 3, exhibits another
issue: Contrary to the second schema rule de�ned in Section
2.2, the outermost dictionary instance Dict2 contains both
Label and Guard instances.

We eliminate this schema rule violation by adding another
assertion as a fact. This new assertion states that for each
dictionary instance d, all of the contents (d.contents)must
be guards if at least one (some) of its keys is a guard:

// if a dict key is a guard,
// all dict keys must be so.
all d: Dict |

{some Guard & d.contents implies
d.contents in Guard}

After going through this iterative process of re�ning the
model and visually inspecting arbitrary instances, we end

5

ISS’23, April 2023, Boulder, CO, USA Altuntas, Baugh, and Nusbaumer

up with a full set of assertions shown below. Note that in
the remainder of this paper, we skip the detailed explanation
of Alloy expressions as well as the keywords and operators
used in them. Instead, we brie�y describe each statement via
preceding comment lines.

pred invariants {

// each item can have at most one key
all i: Dict+Value |

lone i.~map

// each key can be owned by one dict
all k: Key |

lone k.~contents

// if a dict key is a guard,
// all dict keys must be so.
all d: Dict |

{some Guard & d.contents implies
d.contents in Guard}

// map.*contents relation is acyclic
no iden & ^(map.*contents)

// all values must be preceded by a label
all v: Value |

some v.^(~map.*~contents) & Label
}

We specify these assertions within a predicate3 called
invariants, so as to reuse them as a fact (precondition) and
as a postcondition during the model checking phase.

4.2 Dynamics
The main operation in ParamGen is the reduce() method
that traverses all of the template branches recursively and
applies in-place modi�cations, e.g., expanding variables, eval-
uating arbitrary Python expressions, and imposing guards,
to generate the �nal set of parameter:value pairs to go into
the model input �le.

Rather than providing an in-depth description of the Alloy
speci�cation and the Python implementation of the reduce()
method, we present them side-by-side in Listing 1, and make
the following observations: Both Alloy and Python versions
have highly readable and succinct syntaxes albeit quite dis-
tinct since each language corresponds to a di�erent pro-
gramming paradigm and serves di�erent purposes. Syntaxes
aside, both versions of the reduce() method look quite sim-
ilar due to a couple of reasons: Firstly, the reduce()method
corresponds to higher level code where algorithm design
aspects are expressed, and where implementation-speci�c
3Predicates may be thought of as boolean functions returning true or false
depending on the evaluation of the statements that they encompass.

details are hidden beneath lower-level function calls like
impose_guards() and expand_vars().
Another reason that the Alloy and Python versions are

alike is that the Python version shown in Listing 1 is the
result of a refactorization that followed the Alloy modeling
exercise. This refactorization made the Python version much
more concise and clear compared to the original implemen-
tation which had more than twice the number of lines of
code. Coming to a much cleaner software and architecture
is in fact an established bene�t of formal speci�cation and
abstraction. A similar experience was described by the leader
of a team that built a real-time operating system: A ten-fold
reduction in code size was achieved after going through an
exercise of formal speci�cation [10].
While the Alloy and Python versions of the higher-level

reduce()method are quite alike, the same cannot be said for
the versions of lower-level operations. The Python version of
the impose_guards()method, for instance, has 25 LOC (not
shown) whereas the Alloy version is much more concise:

// Nondeterministically select one of the
// guards and drop all other branches
pred impose_guards[d: Dict]{

let pkey = d.~map {
some g: d.contents {

pkey.map� = g.map and g.map�=none
(d.contents-g).map� =

(d.contents-g).map
reduce[pkey.map�]

}
}

}

Similarly, the Alloy version of expand_vars() method
contains only a single expression, whereas the Python ver-
sion (not shown) contains a variety of control structures,
string manipulations, and regular expression operations.

let expand_vars[expr]{
no expr & varsToExpand�

}

The Alloy versions of these lower-level operations are
merely abstract representations of actual Python implemen-
tations. Instead of describing what each operation should do
in a step-by-step fashion, they just specify what should be
accomplished at an abstract level. Such abstract representa-
tion of lower-level details allows us to focus on high-level
software and algorithm design aspects. As a result, we can
quickly develop prototypes and detect any design �aws at
the early stages of development. This also allows us to adapt
an incremental modeling style where we can incorporate
more and more details as we develop and re�ne our design.

Before we conclude the speci�cation of ParamGen dynam-
ics, we provide an example of an arbitrary transition that

6

Verifying ParamGen: A Case Study in Scientific So�ware Abstraction and Modeling ISS’23, April 2023, Boulder, CO, USA

pred reduce[data: Dict+Value]{

data in Dict implies {

// (1) Expand vars in keys
expand_vars[data.contents]

// (2) Evaluate guards
is_guarded_dict[data] implies
impose_guards[data]

// (3) Call reduce recursively
else
all key : data.contents |
key.map� = key.map and
reduce[key.map�]

}
else
// (4) Expand vars
expand_vars[data]

}

def reduce(data):

if isinstance(data, dict):

(1) Expand vars in keys
data = expand_key_vars(data)

(2) Evaluate guards
if is_guarded_dict(data):
data = reduce(impose_guards(data))

(3) Call reduce recursively
else:
for key in data:

data[key] = reduce(data[key])

else:
(4) expand vars, apply formulas
data = expand_vars(data)

return data

Listing 1. Alloy and Python versions of ParamGen’s reduce() method are shown on the left and right panels, respectively.

demonstrates the e�ect of executing the reduce method on
an arbitrary template instance (Figure 4).

4.3 Bounded Model Checking
Visually inspecting a number of arbitrary model instances is
quite useful in re�ning the early versions of an Alloy model.
As the model evolves, however, a more rigorous analysis may
be carried out by the Alloy analyzer in the form of bounded
model checking. In this mode of analysis, the Alloy analyzer
interprets the model speci�cation and automatically checks
for any violations of assertions by searching through all
possible states and transitions within a given bound.

For our Alloy model of ParamGen, we identify and specify
the safety conditions as follows: (each assertion is brie�y
described via adjacent comment lines.)

reduce[r] implies {

invariants and // Invariants remain valid
r.map� in Dict // The result is a Dict

// ai: active items
all ai: r.*(map�.*contents) {

// all labels map to some Value or Dict
{ai in Label implies

ai.map in Value+Null+Dict}

// no active guard remains
ai not in Guard

// all keys should lead to a value
{ai in Key implies

some ai.^(map.*contents) & Value}

// all values should have a label
{ai in Value implies

some ai.^(~map.*~contents) & Label}

// no remaining vars to expand
ai not in VarsToExpand�}

}

Having speci�ed all the necessary safety conditions of
interest, we instruct Alloy to check for any violations for
at most 8 instances of each top-level signature, i.e., Dict,
Key, and Value. In about a couple of minutes, Alloy analyzer
con�rms that no counterexample exists within the given
bound (Figure 5).
A small bound on the scope might sound insu�cient in

detecting real-world bugs. However, the small scope hypoth-
esis states that “most bugs have small counterexamples” and
so if an assertion is invalid, it can most likely be replicated
within a small scope [8]. Thus, bounded model checking can
provide further con�dence when combined with traditional
testing.

7

ISS’23, April 2023, Boulder, CO, USA Altuntas, Baugh, and Nusbaumer

Figure 4. An arbitrary transition generated by Alloy. The tree beginning with the Root key on the left panel corresponds to
an initial, arbitrary template instance, while the tree beginning with the Root key on the right panel corresponds to the �nal
outcome of executing the reduce() method.

Figure 5. Alloy con�rms that no safety violation occurs within the given bound.

5 Discussion
As discussed in the previous section, amajor bene�t of formal
methods, and of Alloy, in particular, is further con�dence
in the reliability of software. Another major bene�t is that
formal speci�cation helps us better understand the systems
that we develop.

“It’s a good idea to understand a system before
building it, so it’s a good idea to write a speci�-
cation of a system before implementing it [9].”

Although specifying a system beforehand is the ideal soft-
ware development approach, it may not always be feasible
or possible in the realm of scienti�c computing where short-
term concerns about performance, resources, and project

timelines dominate and legacy codebases are widely encoun-
tered [3]. Yet, we believe that formal speci�cation and mod-
eling may be useful at later stages of scienti�c software
development as well.
In fact, this study is one such attempt at utilizing formal

methods: We developed the Alloy model after we developed
the Python implementation and made it operational. Even so,
we have bene�ted signi�cantly from this modeling exercise.
Firstly, we have come up with cleaner andmore maintainable
software as a result of refactoring guided by the Alloy speci-
�cation. Additionally, we have identi�ed �aws in template
handling and extended sanity checks in the actual implemen-
tation to prevent unexpected or unaccounted-for template

8

Verifying ParamGen: A Case Study in Scientific So�ware Abstraction and Modeling ISS’23, April 2023, Boulder, CO, USA

formations. For instance, the �rst schema rule de�ned in Sec-
tion 2.2 was identi�ed during the development and analysis
of the Alloy model of ParamGen. Subsequently, it has been
incorporated into the Python implementation as a safety
condition.

6 Conclusions
We have introduced a highly �exible Python module called
ParamGen for auto-generating runtime input parameter �les
within earth system modeling frameworks. Subsequently,
we have developed and analyzed a formal speci�cation of
ParamGen in Alloy to reason about its behavior and relia-
bility. In doing so, we have observed and argued for several
bene�ts of formal speci�cation that can be summarized in
two broad themes:

Reliability. Testing is crucial in developing reliable sci-
enti�c software, but it is not always su�cient. Due to their
rigorous nature and coverage that cannot be matched by
any testing suite, formal methods may be complementary to
testing wherever feasible.

Maintainability. Exploring abstractions that form the
basis of software design via formal speci�cation lead to more
maintainable codebases. This is evidenced by our experience
in refactoring ParamGen’s reduce()method and coming up
with a cleaner and more concise version after going through
the exercise of modeling it in Alloy.

As far as we are aware, ours is the �rst study to formally
specify and analyze a parameter generator used within the
context of climate modeling. However, we have previously
used formal methods to specify and analyze other aspects
of climate models and scienti�c computing applications. For
example, we have previously used KeYmaera X, a popular for-
mal methods tool from the �eld of cyber-physical systems, to
verify the correctness of discrete updates that appear in the
K-pro�le parameterization, a vertical ocean mixing scheme
used in MOM6 and several other ocean models [2]. Similarly,
we used Alloy to analyze a discrete wetting and drying al-
gorithm used in a hurricane storm surge model [3]. We also
used Alloy to model and reason about sparse matrix compu-
tations, which are central to climate models and many other
scienti�c computing applications [4, 7]. In another study,
we used the SPIN model checker to specify the inherent
concurrency and verify the absence of race conditions in a
multi-instance ocean model [1].
A single approach or tool may not be able to meet every

need [2]. However, as demonstrated by this and prior work,
we believe that formal speci�cation and veri�cation can be
supplemental and practical means of improving the relia-
bility and maintainability of many aspects of earth system
models, and, more broadly, of scienti�c computing applica-
tions.

References
[1] Alper Altuntas and John Baugh. 2017. Verifying concurrency in an

adaptive ocean circulation model. In Proceedings of the First Interna-
tional Workshop on Software Correctness for HPC Applications. 1–7.

[2] Alper Altuntas and John Baugh. 2018. Hybrid theorem proving
as a lightweight method for verifying numerical software. In 2018
IEEE/ACM 2nd International Workshop on Software Correctness for HPC
Applications (Correctness). IEEE, 1–8.

[3] John Baugh and Alper Altuntas. 2018. Formal methods and �nite
element analysis of hurricane storm surge: A case study in software
veri�cation. Science of Computer Programming 158 (2018), 100–121.

[4] Juan Benavides, John Baugh, and Ganesh Gopalakrishnan. 2023. An
HPC practitioner’s workbench for formal re�nement checking. In Inter-
national Workshop on Languages and Compilers for Parallel Computing.
Springer, 64–72.

[5] Julien Brunel, David Chemouil, Alcino Cunha, and NunoMacedo. 2021.
Formal Software Design with Alloy 6. h�ps://haslab.github.io/formal-
so�ware-design/index.html. Accessed: 2023-05-07.

[6] Edsger Wybe Dijkstra et al. 1970. Notes on structured programming.
[7] Tristan Dyer, Alper Altuntas, and John Baugh. 2019. Bounded veri�ca-

tion of sparse matrix computations. In 2019 IEEE/ACM 3rd International
Workshop on Software Correctness for HPC Applications (Correctness).
IEEE, 36–43.

[8] Daniel Jackson. 2012. Software Abstractions: logic, language, and anal-
ysis. MIT press.

[9] Leslie Lamport. 2002. Specifying systems: the TLA+ language and
tools for hardware and software engineers. (2002).

[10] Leslie Lamport et al. 2018. If you’re not writing a program, don’t use
a programming language. Bulletin of EATCS 2, 125 (2018).

[11] CIME Repository. 2023. h�ps://github.com/ESMCI/cime Accessed:
2023-06-16.

9

https://haslab.github.io/formal-software-design/index.html
https://haslab.github.io/formal-software-design/index.html
https://github.com/ESMCI/cime

